10.已知角α的終邊過點(diǎn)(m,9),且tanα=$\frac{3}{4}$,則sinα的值為( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

分析 直接利用任意角的三角函數(shù),求解即可.

解答 解:角α的終邊為點(diǎn)P(m,9),即x=m,y=9,
∴r=$\sqrt{{m}^{2}+81}$,
∵tanα=$\frac{9}{m}$=$\frac{3}{4}$,
∴m=12.
則r=15.
∴sinα=$\frac{y}{r}$=$\frac{9}{15}$=$\frac{3}{5}$.
故選:C.

點(diǎn)評(píng) 本題考查了任意三角形的函數(shù)的定義,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)令cn=$\frac{{({a}_{n}+1)}^{(n+1)}}{6{(_{n}+2)}^{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)點(diǎn)P在曲線y=$\frac{1}{2}$x2上,從原點(diǎn)向A(2,2)移動(dòng),如果直線OP,曲線y=$\frac{1}{2}$x2及直線x=2所圍成的陰影部分面積分別記為S1、S2
(Ⅰ)當(dāng)S1=S2時(shí),求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)S1+S2有最小值時(shí),求點(diǎn)P的坐標(biāo)和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知梯形ABCD中,AB⊥AD,$\overrightarrow{AB}=3\overrightarrow{DC},cos∠DAC=\frac{{\sqrt{3}}}{2},\overrightarrow{BE}=m\overrightarrow{BC}$(0<m<1),若|$\overrightarrow{AE}$|2=$|{\overrightarrow{AC}}||{\overrightarrow{AB}}$|,則$\frac{CE}{CB}$=(  )
A.$\frac{1+\sqrt{15}}{7}$B.$\frac{1}{7}$C.$\frac{2}{3}$D.$\frac{2+\sqrt{15}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,已知△ABC,$\overrightarrow{BD}$=3$\overrightarrow{DC}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{AD}$=( 。
A.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$C.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow$D.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.△ABC中,a,b,c分別為角A,B,C的對(duì)邊,a=$\sqrt{3}$,b=$\sqrt{2}$,B=45°,則角C的大小為( 。
A.15°B.75°C.15°或75°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.y=3sinx的值域是[-3,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}滿足:a1=-$\frac{2}{3},{a_{n+1}}=\frac{{-2{a_n}-3}}{{3{a_n}+4}}(n∈$N*).
(1)證明:數(shù)列$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:bn=$\frac{3}{2}({{a_n}+1})(n∈$N*),若對(duì)一切n∈N*,都有(1-b1)(1-b2)…(1-bn)≤$\frac{λ}{{\sqrt{2n+1}}}$成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.計(jì)算$C_5^4+C_6^4+C_7^4+C_8^4$等于( 。
A.125B.126C.120D.132

查看答案和解析>>

同步練習(xí)冊(cè)答案