19.已知數(shù)列{an}滿足:a1=-$\frac{2}{3},{a_{n+1}}=\frac{{-2{a_n}-3}}{{3{a_n}+4}}(n∈$N*).
(1)證明:數(shù)列$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:bn=$\frac{3}{2}({{a_n}+1})(n∈$N*),若對一切n∈N*,都有(1-b1)(1-b2)…(1-bn)≤$\frac{λ}{{\sqrt{2n+1}}}$成立,求實(shí)數(shù)λ的最小值.

分析 (1)利用數(shù)列的遞推關(guān)系式推出數(shù)列$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是首項(xiàng)為3,公差為 3的等差數(shù)列,然后求解通項(xiàng)公式.
(2)化簡數(shù)列的通項(xiàng)公式,利用數(shù)列的單調(diào)性,化簡求解即可.

解答 解:(1)因?yàn)?{a_{n+1}}+1=\frac{{-2{a_n}-3}}{{3{a_n}+4}}+1=\frac{{{a_n}+1}}{{3{a_n}+4}}$,
∴$\frac{1}{{{a_{n+1}}+1}}=\frac{{3{a_n}+4}}{{{a_n}+1}}=3+\frac{1}{{{a_n}+1}}$,所以$\frac{1}{{{a_{n+1}}+1}}-\frac{1}{{{a_n}+1}}=3$,
所以$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是首項(xiàng)為3,公差為 3的等差數(shù)列,
所以$\frac{1}{{{a_n}+1}}=3n$,∴${a_n}=\frac{1}{3n}-1$.
(2)由數(shù)列{bn}滿足:bn=$\frac{3}{2}({{a_n}+1})(n∈$N*),可得${b_n}=\frac{1}{2n}$,
設(shè)$f(n)=\sqrt{2n+1}\frac{1}{2}•\frac{3}{4}•\frac{5}{6}…\frac{2n-1}{2n}(n≥1,n∈$N*),
由$\frac{{f({n+1})}}{f(n)}=\sqrt{\frac{{4{n^2}+8n+3}}{{4{n^2}+8n+4}}}<1$得$λ≥\frac{{\sqrt{3}}}{2}$,
即λ的最小值為$\frac{{\sqrt{3}}}{2}$.

點(diǎn)評 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列與不等式的綜合應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)U={x|x是不大于8的正整數(shù)},A={2,4,5,8},B={1,3,5,7},求A∩(∁UB),(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知角α的終邊過點(diǎn)(m,9),且tanα=$\frac{3}{4}$,則sinα的值為( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知θ∈{α|α=kπ+(-1)k+1•$\frac{π}{4}$,k∈Z},則角θ的終邊所在的象限是三,四.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{1}{3}{x^3}+a{x^2}$-bx+2(a,b∈R)有極值,且在x=1處的切線與直線2x+2y+3=0垂直.
(1)求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得函數(shù)f(x)的極小值為2.若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知⊙C:x2+(y-2)2=1,點(diǎn)M在x軸正半軸上,過點(diǎn)M作⊙C的兩條切線,切點(diǎn)分別為A,B.
(1)若點(diǎn)M的坐標(biāo)為(2,0),求$\overrightarrow{MA}$•$\overrightarrow{MB}$的值;
(2)若|AB|=$\frac{4\sqrt{2}}{3}$,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,拋物線形拱橋的頂點(diǎn)距水面2米時(shí),測得拱橋內(nèi)水面寬為12米,當(dāng)水面下降1米后,拱橋內(nèi)水面寬度是( 。
A.6$\sqrt{2}$米B.6$\sqrt{6}$米C.3$\sqrt{2}$米D.3$\sqrt{6}$米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.正方形ABCD的邊長為2,M,N分別是邊AB,BC上的點(diǎn),當(dāng)△BMN的周長是4時(shí),∠MDN的大小是( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.斜率為2的直線l與橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$交于不同的兩點(diǎn),且這兩個(gè)交點(diǎn)在x軸上的射影恰好是橢圓的兩個(gè)焦點(diǎn),則該橢圓的離心率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}-1$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}-1}}{2}$

查看答案和解析>>

同步練習(xí)冊答案