8.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y≤2}\\{x-y≥-1}\\{x+y≥1}\end{array}\right.$,則2x+y的最小值為1.

分析 作出不等式組表示的平面區(qū)域,由z=2x+y可得y=-2x+z,則z表示直線y=-2x+z在y軸上的截距,截距越小,z越小,結(jié)合圖象可求z的最小值.

解答 解:作出實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y≤2}\\{x-y≥-1}\\{x+y≥1}\end{array}\right.$,表示的平面區(qū)域,如圖所示的陰影部分,
由z=2x+y可得y=-2x+z,則z表示直線y=-2x+z在y軸上的截距,截距越小,z越小,
由題意可得,當(dāng)y=-2x+z經(jīng)過點(diǎn)C時(shí),z最小,
由$\left\{\begin{array}{l}{x-y=-1}\\{x+y=1}\end{array}\right.$,可得C(0,1),
此時(shí)z=1,
故答案為:1.

點(diǎn)評 本題主要考查了線性目標(biāo)函數(shù)在線性約束條件下的最值的求解,解題的關(guān)鍵是明確z的幾何意義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)長軸的兩頂點(diǎn)為A、B,左右焦點(diǎn)分別為F1、F2,焦距為2c且a=2c,過F1且垂直于x軸的直線被橢圓C截得的線段長為3.
(1)求橢圓C的方程;
(2)在雙曲線$T:\frac{x^2}{4}-\frac{y^2}{3}=1$上取點(diǎn)Q(異于頂點(diǎn)),直線OQ與橢圓C交于點(diǎn)P,若直線AP、BP、AQ、BQ的斜率分別為k1、k2、k3、k4,試證明:k1+k2+k3+k4為定值;
(3)在橢圓C外的拋物線K:y2=4x上取一點(diǎn)E,若EF1、EF2的斜率分別為${k_1}^′$、${k_2}^′$,求$\frac{1}{{{k_1}^′{k_2}^′}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知變量x、y滿足約束條件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2y+3≥0}\\{x≤a}\end{array}\right.$,且z=x+2y的最小值為3,則$\frac{y}{x+1}$≥$\frac{1}{2}$的概率是( 。
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)$f(x)=\frac{1}{x}{log_2}({{4^x}+1})-1$的圖象(  )
A.關(guān)于原點(diǎn)對稱B.關(guān)于y軸對稱C.關(guān)于x軸對稱D.關(guān)于直線y=x對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在非直角△ABC中,D為BC上的中點(diǎn),且$\frac{\overrightarrow{CA}•\overrightarrow{CB}}{{S}_{△CAB}}$=4$\frac{{S}_{△ABD}}{\overrightarrow{AB}•\overrightarrow{AD}}$,E為邊AC上一點(diǎn),2$\overrightarrow{BE}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$,BE=2,則△ABC的面積的最大值為$\frac{8}{3}$.(其中S△ABC表示△ABC的面積)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,點(diǎn)P(0,$\sqrt{3}$),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為${ρ^2}=\frac{4}{{1+{{cos}^2}θ}}$.直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.(t$為參數(shù)).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)直線l與曲線C的兩個(gè)交點(diǎn)分別為A,B,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知實(shí)數(shù)x,y滿足不等式$\left\{\begin{array}{l}x+y≤2\\ 2x+y≤3\\ x≥0\\ y≥0\end{array}\right.$,則3x+2y的最大值為( 。
A.0B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.當(dāng)實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$時(shí),ax+y+a+1≥0恒成立,則實(shí)數(shù)a的取值范圍是$[-\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象與$g(x)=2co{s^2}({x-\frac{π}{6}})+1$的圖象的對稱軸相同,則f(x)的一個(gè)遞增區(qū)間為( 。
A.$[{-\frac{5π}{6},\frac{π}{6}}]$B.$[{-\frac{π}{3},\frac{π}{6}}]$C.$[{-\frac{5π}{12},\frac{π}{12}}]$D.$[{\frac{π}{12},\frac{7π}{12}}]$

查看答案和解析>>

同步練習(xí)冊答案