分析 (Ⅰ)利用查三角恒等變換化簡函數f(x)的解析式,再利用正弦函數的周期性和單調性,求得函數f(x)的最小正周期和單調遞增區(qū)間.
(2)由題意利用正弦函數的定義域和值域,求得f(x)的值域,根據f(x)的圖象和直線y=m在區(qū)間$[0,\frac{π}{3}]$上有兩個不同的交點,結合f(x)的圖象求得m的范圍.
解答 解:(Ⅰ)依題意得,$f(x)=\frac{{\sqrt{3}}}{2}cos2x-\frac{1}{2}sin2x+\frac{{\sqrt{3}}}{2}cos2x+\frac{1}{2}sin2x+sin2x+1$
=$sin2x+\sqrt{3}cos2x+1=2sin(2x+\frac{π}{3})+1$,
故函數f(x)的最小正周期為$T=\frac{2π}{2}=π$;
由$2kπ-\frac{π}{2}≤2x+\frac{π}{3}≤2kπ+\frac{π}{2}(k∈Z)$,求得$kπ-\frac{5π}{12}≤x≤kπ+\frac{π}{12}(k∈Z)$,
∴函數f(x)單調遞增區(qū)間為$[kπ-\frac{5π}{12},kπ+\frac{π}{12}](k∈Z)$.
(Ⅱ)∵$0≤x≤\frac{π}{3}$,∴$\frac{π}{3}≤2x+\frac{π}{3}≤π$,∴$0≤sin(2x+\frac{π}{3})≤1$,∴1≤f(x)≤3,
由函數g(x)=f(x)-m在區(qū)間$[0,\frac{π}{3}]$上有兩個不同的零點,
可知f(x)=m在區(qū)間$[0,\frac{π}{3}]$內有兩個相異的實根,
即y=f(x)圖象與y=m的圖象有兩個不同的交點.
在區(qū)間$[0,\frac{π}{3}]$上,2x+$\frac{π}{3}$∈[$\frac{π}{3}$,π],sin(2x+$\frac{π}{3}$)∈[0,1],
f(x)=2sin(2x+$\frac{π}{3}$)+1∈[1,3],
結合圖象可知,當$\sqrt{3}+1≤m<3$時,兩圖象有兩個不同的交點,
∴實數m的取值范圍是$[\sqrt{3}+1,3)$.
點評 本題主要考查三角恒等變換,正弦函數的周期性和單調性,正弦函數的定義域和值域,正弦函數的圖象,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{15}}}{6}$ | B. | $\frac{{\sqrt{15}}}{4}$ | C. | $\frac{{\sqrt{15}}}{2}$ | D. | $\sqrt{15}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $4+\frac{2π}{3}$ | B. | $4+\frac{{\sqrt{2}π}}{6}$ | C. | $2+\frac{2π}{3}$ | D. | $2+\frac{{\sqrt{2}π}}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com