【題目】已知函數(shù)(為常數(shù)).
(1)討論函數(shù)的單調性;
(2)當時,設的兩個極值點,()恰為的零點,求的最小值.
【答案】(Ⅰ)當時,的單調遞增區(qū)間為,單調遞減區(qū)間為,當時,的單調遞增區(qū)間為;(Ⅱ).
【解析】
試題(1)先求函數(shù)導數(shù),討論導函數(shù)符號變化規(guī)律:當時,導函數(shù)不變號,故的單調遞增區(qū)間為.當時,導函數(shù)符號由正變負,即單調遞增區(qū)間為,單調遞減區(qū)間減區(qū)間為,(2)先求導數(shù)得為方程的兩根,再求導數(shù)得,因此,而由為的零點,得,兩式相減得,即得,因此,從而,其中根據韋達定理確定自變量范圍:因為
又,所以
試題解析:(1),當時,由解得,即當時,單調遞增, 由解得,即當時,單調遞減,當時,,即在上單調遞增,當時,故,即在上單調遞增,所以當時,的單調遞增區(qū)間為,單調遞減區(qū)間減區(qū)間為,當時,的單調遞增區(qū)間為.
(2),則,所以的兩根即為方程的兩根. 因為,所以,又因為為的零點,所以,兩式相減得,得,而,
所以
令,由得
因為,兩邊同時除以,得,因為,故,解得或,所以,設,所以,則在上是減函數(shù),所以,即的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】某手機企業(yè)為確定下一年度投入某種產品的研發(fā)費用,統(tǒng)計了近年投入的年研發(fā)費用千萬元與年銷售量千萬件的數(shù)據,得到散點圖1,對數(shù)據作出如下處理:令,,得到相關統(tǒng)計量的值如圖2:
(1)利用散點圖判斷和哪一個更適合作為年研發(fā)費用和年銷售量的回歸類型(不必說明理由),并根據數(shù)據,求出與的回歸方程;
(2)已知企業(yè)年利潤千萬元與的關系式為(其中為自然對數(shù)的底數(shù)),根據(1)的結果,要使得該企業(yè)下一年的年利潤最大,預計下一年應投入多少研發(fā)費用?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在坐標平面上,縱橫坐標都是整數(shù)的點稱為整點.試證:存在一個同心圓的集合,使得:(1)每個整點都在此集體的某一圓周上;(2)此集合的每個圓周上.有且只有一個整點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某手機生產企業(yè)為了解消費者對某款手機的認同情況,通過銷售部隨機抽取50名購買該款手機的消費者,并發(fā)出問卷調查(滿分50分),該問卷只有20份給予回復,這20份的評分如下:
男 | 47,36,28,48,48,44,50,46,50,37,35,49 |
女 | 38,37,50,36,38,45,29,39 |
(1)完成下面的莖葉圖,并求12名男消費者評分的中位數(shù)與8名女消費者評分的眾數(shù)及平均值;
男 | 女 | |
2 | ||
3 | ||
4 | ||
5 |
滿意 | 不滿意 | 合計 | |
男 | |||
女 | |||
合計 |
(2)若大于40分為“滿意”,否則為“不滿意”,完成上面的列聯(lián)表,并判斷是否有95%的把握認為消費者對該款手機的“滿意度”與性別有關;
(3)若從回復的20名消費者中按性別用分層抽樣的方法抽取5人,再從這5人中隨機抽取2人作進一步調查,求至少有1名女性消費者被抽到的概率.
附:
0.05 | 0.025 | 0.01 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,AB=4,∠A=60°,以對角線BD為折痕把△ABD折起,使點A到達如圖所示點E的位置,使.
(1)求證:BD⊥EC;
(2)求三棱錐B-CE-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司的新能源產品上市后在國內外同時銷售,已知第一批產品上市銷售40天內全部售完,該公司對這批產品上市后的國內外市場銷售情況進行了跟蹤調查,如圖所示,其中圖①中的折線表示的是國外市場的日銷售量與上市時間的關系;圖②中的拋物線表示的是國內市場的日銷售量與上市時間的關系;下表表示的是產品廣告費用、產品成本、產品銷售價格與上市時間的關系.
圖① 圖②
第t天產品廣告費用(單位:萬元) | 每件產品成本(單位:萬元) | 每件產品銷售價格(單位:萬元) | |
3 | 6 | ||
10 | 3 | 5 |
(1)分別寫出國外市場的日銷售量、國內市場的日銷售量與產品上市時間t的函數(shù)關系式;
(2)產品上市后的哪幾天,這家公司的日銷售利潤超過260萬元?
(日銷售利潤=(單件產品銷售價-單件產品成本)×日銷售量-當天廣告費用,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經過市場調查,某種商品在銷售中有如下關系:第x()天的銷售價格(單位:元/件)為,第x天的銷售量(單位:件)為(為常數(shù)),且在第20天該商品的銷售收入為600元(銷售收入=銷售價格×銷售量).
(1)求a的值,并求第15天該商品的銷售收入;
(2)求在這30天中,該商品日銷售收入y的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一家公司生產某種品牌服裝的年固定成本為10萬元,每生產1千件需另投入2.7萬元.設該公司一年內共生產該品牌服裝x千件并全部銷售完,每千件的銷售收入為萬元,且.
(1)寫出年利潤W(萬元)關于年產量x(千件)的函數(shù)解析式;
(2)年產量為多少千件時,該公司在這一品牌服裝的生產中所獲得利潤最大?(注:年利潤=年銷售收入﹣年總成本)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com