8.已知焦點(diǎn)在x軸上,離心率為$\frac{{\sqrt{6}}}{3}$的橢圓C的一個頂點(diǎn)是(0,1).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),且OA⊥OB,O為坐標(biāo)原點(diǎn),判斷直線l與圓x2+y2=1的位置關(guān)系?證明你的結(jié)論.

分析 (1)根據(jù)題意,設(shè)橢圓方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,橢圓的半焦距為c,結(jié)合題意可得$\left\{\begin{array}{l}\frac{c}{a}=\frac{{\sqrt{6}}}{3}\\ b=1\\{a^2}={b^2}+{c^2}\end{array}\right.$,解可得a、b的值,代入橢圓的方程即可得答案;
(2)根據(jù)題意,分析直線的斜率,分2種情況證明:①當(dāng)直線l與x軸垂直時,由橢圓的對稱性分析易得證明,②當(dāng)直線l與x軸不垂直時,設(shè)l的方程為y=kx+m,聯(lián)立直線與橢圓的方程,得到(3k2+1)x2+6kmx+3m2-3=0,結(jié)合根與系數(shù)的關(guān)系以及向量數(shù)量積的定義分析,可得證明;綜合可得結(jié)論.

解答 解:(Ⅰ)依題意,設(shè)橢圓方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,設(shè)橢圓的半焦距為c,
又$\left\{\begin{array}{l}\frac{c}{a}=\frac{{\sqrt{6}}}{3}\\ b=1\\{a^2}={b^2}+{c^2}\end{array}\right.$,
所以$a=\sqrt{3},b=1,c=\sqrt{2}$.
所以橢圓C的方程為$\frac{x^2}{3}+{y^2}=1$. 
(Ⅱ)直線l與圓x2+y2=1相交,
分2種情況證明:
①當(dāng)直線l與x軸垂直時,由OA⊥OB及橢圓的對稱性得直線l的方程為$x=±\frac{{\sqrt{3}}}{2}$,
此時l與圓x2+y2=1相交. 
②當(dāng)直線l與x軸不垂直時,
設(shè)l的方程為y=kx+m,
由$\left\{{\begin{array}{l}{y=kx+m}\\{\frac{x^2}{3}+{y^2}=1}\end{array}}\right.$,得到(3k2+1)x2+6kmx+3m2-3=0,
所以${x_1}+{x_2}=-\frac{6km}{{3{k^2}+1}}$,${x_1}{x_2}=\frac{{3{m^2}-3}}{{3{k^2}+1}}$,
于是$\overrightarrow{OA}•\overrightarrow{OB}={x_1}{x_2}+{y_1}{y_2}={x_1}{x_2}+({k{x_1}+m})({k{x_2}+m})=({{k^2}+1}){x_1}{x_2}+mk({{x_1}+{x_2}})+{m^2}$
=$({{k^2}+1})•\frac{{3{m^2}-3}}{{3{k^2}+1}}+mk({-\frac{6km}{{3{k^2}+1}}})+{m^2}$=$\frac{{({{k^2}+1})({3{m^2}-3})-6{k^2}{m^2}+{m^2}({3{k^2}+1})}}{{3{k^2}+1}}$
=$\frac{{3({{k^2}+1}){m^2}-3({{k^2}+1})-6{k^2}{m^2}+{m^2}({3{k^2}+1})}}{{3{k^2}+1}}=\frac{{4{m^2}-3({{k^2}+1})}}{{3{k^2}+1}}=0$,
所以${m^2}=\frac{{3({{k^2}+1})}}{4}$,此時△>0.
此時點(diǎn)O到直線l的距離$d=\frac{|m|}{{\sqrt{1+{k^2}}}}=\sqrt{\frac{{\frac{{3({{k^2}+1})}}{4}}}{{{k^2}+1}}}=\frac{{\sqrt{3}}}{2}<1$,
于是l與圓x2+y2=1相交.

點(diǎn)評 本題考查橢圓的幾何性質(zhì),涉及直線與橢圓的位置關(guān)系,注意要分析直線的斜率是否存在.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.2015年12月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為2015年以來最嚴(yán)重的污染過程,為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時間段車流量與PM2.5的數(shù)據(jù)如表:
時間星期一星期二星期三星期四星期五星期六星期日
車流量x(萬輛)1234567
PM2.5的濃度y(微克/立方米)28303541495662
(1)由散點(diǎn)圖知y與x具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;(提示數(shù)據(jù):$\sum_{i=1}^7{{x_i}{y_i}=1372}$)
(2)(I)利用(1)所求的回歸方程,預(yù)測該市車流量為12萬輛時PM2.5的濃度;(II)規(guī)定:當(dāng)一天內(nèi)PM2.5的濃度平均值在(0,50]內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)PM2.5的濃度平均值在(50,100]內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量不超過多少萬輛?(結(jié)果以萬輛為單位,保留整數(shù))參考公式:回歸直線的方程是$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=Msin(ωx+φ)(M>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,其中A(2,3)(點(diǎn)A為圖象的一個最高點(diǎn)),B(-$\frac{5}{2}$,0),則函數(shù)f(x)=3sin($\frac{π}{3}$x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|x≤4},B={x|x2>4},則A∩B=(  )
A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|x<-2或2<x≤4}D.{x|x<-2或2<x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四邊形ABCD是邊長為1的正方形,ED⊥平面ABCD,F(xiàn)B⊥平面ABCD,且ED=FB=1,M為BC的中點(diǎn),N為AF的中點(diǎn).
(Ⅰ)求證:AF⊥EC;
(Ⅱ)求證:MN⊥平面AEF;
(Ⅲ)求二面角A-EF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.直線l過點(diǎn)P(-1,2)且與以點(diǎn)M(-3,-2)、N(4,0)為端點(diǎn)的線段恒相交,則l的斜率取值范圍是$({-∞,-\frac{2}{5}}]∪[{2,+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.橢圓兩焦點(diǎn)為F1(-4,0),F(xiàn)2(4,0),P在橢圓上,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,△PF1F2的面積為9,則該橢圓的標(biāo)準(zhǔn)方程為(  )
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1D.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax-$\frac{x}$-2lnx,對任意實數(shù)x>0,都有f(x)=-f($\frac{1}{x}$)成立.
(1)求函數(shù)y=f(ex)所有零點(diǎn)之和;
(2)對任意實數(shù)x≥1,函數(shù)f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x+1|+|x-3|.
(1)求不等式f(x)<6的解集;
(2)若關(guān)于x的不等式f(x)≥|2a+1|不恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案