已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)有兩個頂點在直線x+2y-2=0上
(1)求橢圓C的方程;
(2)當直線l:y=x+m與橢圓C相交時,求m的取值范圍;
(3)設(shè)直線l:y=x+m與橢圓C交于A,B兩點,O為坐標原點,若以為AB直徑的圓過原點,求m的值.
考點:直線與圓錐曲線的關(guān)系,橢圓的標準方程
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)求出直線x+2y-2=0與坐標軸的交點,可得橢圓的a,b的值,即可得出橢圓C的方程;
(2)直線y=x+m代入橢圓方程,消去y整理,根據(jù)直線l:y=x+m與橢圓C相交,可得△>0,即可求出m的取值范圍;
(3)以為AB直徑的圓過原點,等價于
OA
OB
,可得
OA
OB
=0,即x1x2+y1y2=0,結(jié)合韋達定理可得結(jié)論.
解答: 解:(1)直線x+2y-2=0與坐標軸交于兩點(2,0),(0,1),
∴a=2,b=1,
∴橢圓C的方程為
x2
4
+y2
=1;
(2)直線y=x+m代入橢圓方程,消去y整理得:5x2+8mx+4m2-4=0,
∵直線l:y=x+m與橢圓C相交,
∴△=(8m)2-4×5×(4m2-4)>0,
即-16m2+80>0,解得-
5
<m<
5

(3)設(shè)A,B兩點的坐標分別為(x1,y1)、(x2,y2),
由(2)得x1+x2=-
8m
5
,x1x2=
4m2-4
5
,
∵以為AB直徑的圓過原點,
OA
OB
,
OA
OB
=0,
∴x1x2+y1y2=0,
∴2x1x2+m(x1+x2)+m2=0,
即2•
4m2-4
5
-
8m2
5
+m2=0,
解得m=±
2
5
10
點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關(guān)系,考查韋達定理,考查學(xué)生的計算能力,正確運用韋達定理是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P(x,y)是角θ的終邊上任意一點,其中x≠0,y≠0,并記r=
x2+y2
.若定義cotθ=
x
y
,secθ=
r
x
,cscθ=
r
y

(Ⅰ)求證sin2θ+cos2θ-tan2θ-cot2θ+sec2θ+csc2θ是一個定值,并求出這個定值;
(Ⅱ)求函數(shù)f(θ)=|sinθ+cosθ+tanθ+cotθ+secθ+cscθ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
2
sin(x-
π
4
)(0≤x≤π)
,求使f(x)≤cosα恒成立的α的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,邊長為3的正方形ABCD中
(1)點E、F分別是AB、BC上的點,將△BEF,△AED,△DCF分別沿EF、DE、DF折起,使A、B、C三點重合于點P,求PD與平面EFD所成角的正弦值;
(2)當BE=BF=
1
3
BC時,將△AED,△DCF分別沿DE、DF折起,使A、C兩點重合于點Q,求點E到平面QDF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-x-2a
(1)若a=1,求函數(shù)f(x)的零點;
(2)若f(x)有零點,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥CD,在銳角△PAD中PA=PD,并且BD=2AD=8,AB=2DC=4
5

(1)點M是PC上的一點,證明:平面MBD⊥平面PAD;
(2)若PA與平面PBD成角60°,當面MBD⊥平面ABCD時,求點M到平面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱柱ABC-A1B1C1中,M為AB的中點,N為A1B1的中點.
(1)求證:AC1∥平面B1MC;
(2)求證:平面ANC1∥平面B1MC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=loga(x-1)(a>0且a≠1)的圖象必經(jīng)過定點P,則點P的坐標為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=2y的準線方程是
 

查看答案和解析>>

同步練習(xí)冊答案