11.已知復(fù)數(shù)z=2+i(i為虛數(shù)單位),則$\overline{{z}^{2}}$=3-4i.

分析 把復(fù)數(shù)z代入z2,然后展開,再求出$\overline{{z}^{2}}$得答案.

解答 解:由z=2+i,
得z2=(2+i)2=3+4i,
則$\overline{{z}^{2}}$=3-4i.
故答案為:3-4i.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在底面是直角梯形的四棱錐S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=$\frac{1}{2}$.
(1)求四棱錐S-ABCD的體積;
(2)求證:BC⊥面SAB;
(3)求SC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{6},x≥1}\\{-2x-1,x≤-1}\end{array}\right.$,則當(dāng)x≤-1時,則f[f(x)]表達(dá)式的展開式中含x2項(xiàng)的系數(shù)是60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知奇函數(shù)f(x)是定義在R上的增函數(shù),數(shù)列{xn}是一個公差為2的等差數(shù)列,滿足f(x7)+f(x8)=0,則x2017的值為4019.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知正四棱柱ABCD-A1B1C1D1,AB=a,AA1=2a,E,F(xiàn)分別是棱AD,CD的中點(diǎn).
(1)求異面直線BC1與EF所成角的大;
(2)求四面體CA1EF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點(diǎn)A是圓O:x2+y2=4上的一個定點(diǎn),點(diǎn)B是圓O上的一個動點(diǎn),若滿足|$\overrightarrow{AO}$+$\overrightarrow{BO}$|=|$\overrightarrow{AO}$-$\overrightarrow{BO}$|,則$\overrightarrow{AO}$•$\overrightarrow{AB}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知曲線${C_1}:y=\frac{2x}{x+1}\;\;(x>0)$及曲線${C_2}:y=\frac{1}{3x}\;\;(x>0)$,C1上的點(diǎn)P1的橫坐標(biāo)為${a_1}\;(0<{a_1}<\frac{1}{2})$.從C1上的點(diǎn)${P_n}\;(n∈{N^*})$作直線平行于x軸,交曲線C2于Qn點(diǎn),再從C2上的點(diǎn)${Q_n}\;(n∈{N^*})$作直線平行于y軸,交曲線C1于Pn+1點(diǎn),點(diǎn)Pn(n=1,2,3…)的橫坐標(biāo)構(gòu)成數(shù)列{an}.
(1)求曲線C1和曲線C2的交點(diǎn)坐標(biāo);
(2)試求an+1與an之間的關(guān)系;
(3)證明:${a_{2n-1}}<\frac{1}{2}<{a_{2n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)全集U={1,2,3,4,5,6,7},A={1,3,6},B={2,3,5,7},則A∩(∁UB)等于( 。
A.{3,4}B.{1,6}C.{2,5,7}D.{1,3,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若偶函數(shù)y=f(x)在(-∞,0]上遞增,則不等式f(lnx)>f(1)的解集是$(\frac{1}{e},e)$.

查看答案和解析>>

同步練習(xí)冊答案