19.已知函數(shù)f(x)=sin(ωx)(ω>0)的圖象關(guān)于點(diǎn)($\frac{2π}{3}$,0)對(duì)稱,且在區(qū)間(0,$\frac{π}{14}$)上單調(diào)遞增,則ω的最大值為6.

分析 根據(jù)題意得出$\left\{\begin{array}{l}{\frac{2π}{3}ω=kπ,k∈Z}\\{\frac{π}{14}ω≤\frac{π}{2}}\end{array}\right.$,求出ω的最大值即可.

解答 解:函數(shù)f(x)=sinωx的圖象關(guān)于點(diǎn)($\frac{2π}{3}$,0)對(duì)稱,且在(0,$\frac{π}{14}$)上單調(diào)遞增,
∴$\left\{\begin{array}{l}{\frac{2π}{3}ω=kπ,k∈Z}\\{\frac{π}{14}ω≤\frac{π}{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{ω=\frac{3}{2}k,k∈Z}\\{ω≤7}\end{array}\right.$;
ω的最大值為6.
故答案為:6.

點(diǎn)評(píng) 本題考查了正弦函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:?x0∈R,使2${\;}^{{x}_{0}}$+2${\;}^{-{x}_{0}}$=1;命題q:?x∈R,都有l(wèi)g(x2+2x+3)>0.下列結(jié)論中正確的是(  )
A.命題“¬p∧q”是真命題B.命題“p∧¬q”是真命題
C.命題“p∧q”是真命題D.命題“¬p∨¬q”是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)A(0,3),與雙曲線$\frac{{x}^{2}}{14}-\frac{{y}^{2}}{13}$=1有相同的焦點(diǎn)
(1)求橢圓C的方程;
(2)過A點(diǎn)作兩條相互垂直的直線,分別交橢圓C于P,Q兩點(diǎn),則PQ是否過定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo),若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.(x-$\frac{1}{x}$)(2x+$\frac{1}{x}$)5的展開式中,常數(shù)項(xiàng)為-40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某班主任為了對(duì)本班學(xué)生的數(shù)學(xué)和物理成績進(jìn)行分析,隨機(jī)抽取了8位學(xué)生的數(shù)學(xué)和物理成績?nèi)缦卤恚?br />
學(xué)生編號(hào)12345678
數(shù)學(xué)分?jǐn)?shù)x6065707580859095
物理分?jǐn)?shù)y7277808488909395
(Ⅰ)通過對(duì)樣本數(shù)據(jù)進(jìn)行初步處理發(fā)現(xiàn),物理成績y與數(shù)學(xué)成績x之間具有線性相關(guān)性,求y與x的線性回歸方程(系數(shù)精確到0.01).
(Ⅱ)當(dāng)某學(xué)生的數(shù)學(xué)成績?yōu)?00分時(shí),估計(jì)該生的物理成績.(精確到0.1分)
參考公式:回歸直線的方程是:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y)}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.
參考數(shù)據(jù):$\sum_{i=1}^{8}({x}_{1}-\overline{x})^{2}$=1050,$\sum_{i=1}^{8}({y}_{i}-\overline{y})^{2}$≈457,$\sum_{i=1}^{8}({x}_{1}-\overline{x})({y}_{1}-\overline{y})$≈688,$\sqrt{1050}$≈32.4.$\sqrt{457}$≈21.4,$\sqrt{550}$≈23.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若關(guān)于x的方程2sin(2x+$\frac{π}{6}$)=m在[0,$\frac{π}{2}$]上有兩個(gè)不等實(shí)根,則m的取值范圍是( 。
A.(1,$\sqrt{3}$)B.[0,2]C.[1,2)D.[1,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.我國古代數(shù)學(xué)專著《孫子算法》中有“今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?”如果此物數(shù)量在100至200之間,那么這個(gè)數(shù)128.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳疼減一半,六朝才得到其關(guān),要見次日行里數(shù),請(qǐng)公仔細(xì)算相還.”其大意為:“有一個(gè)人走了378里路,第一天健步行走,從第二天起腳疼每天走的路程為前一天的一半,走了6天后到達(dá)目的地,請(qǐng)問第二天走了?”根據(jù)此規(guī)律,求后3天一共走多少里(  )
A.156里B.84里C.66里D.42里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=(x-2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)$a∈(0,\frac{1}{4})$時(shí),求證:函數(shù)f(x)有最小值,并求函數(shù)f(x)最小值的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案