2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x,x≤0}\\{{x}^{2}-x,x>0}\end{array}\right.$,若函數(shù)g(x)=f(x)-m有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍為( 。
A.$({-\frac{1}{4},0})$B.$({-\frac{1}{4},0}]$C.$[{-\frac{1}{2},1}]$D.$[{-\frac{1}{2},1})$

分析 畫出函數(shù)y=f(x)以及y=m的圖象,然后結(jié)合已知條件求解m的范圍即可.

解答 解:函數(shù)y=f(x)與y=m如圖:當(dāng)x>0時(shí),y=x2-x,
開(kāi)口向上,對(duì)稱軸為x=$\frac{1}{2}$,函數(shù)的最小值為:$-\frac{1}{4}$,
函數(shù)g(x)=f(x)-m有三個(gè)不同的零點(diǎn),
就是兩個(gè)函數(shù)y=f(x)與y=m有3個(gè)不同的交點(diǎn),
由圖象可得:m$∈(-\frac{1}{4},0)$.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)個(gè)數(shù),分段函數(shù)的應(yīng)用,考查數(shù)形結(jié)合以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,內(nèi)角A,B,C滿足$2\sqrt{3}sinAsinB=5sinC$且$cosB=\frac{11}{14}$.
(1)求角A的大;
(2)若內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a=14,求邊BC上的中線AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某牙膏廠生產(chǎn)的牙膏的年銷售量(即該廠的年產(chǎn)量)x萬(wàn)支與年廣告費(fèi)用a萬(wàn)元(a≥0)滿足$x=3-\frac{k}{a+1}$(k為常數(shù)),如果不進(jìn)行廣告宣傳,則該牙膏的年銷售量是1萬(wàn)支.已知2014年生產(chǎn)該牙膏的固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)支該產(chǎn)品需要再投入16萬(wàn)元,廠家將每支牙膏的銷售價(jià)格定為每支牙膏平均成本的$\frac{3}{2}$倍(產(chǎn)品成本包括固定投入和再投入兩部分資金,不包括廣告費(fèi)用).
(1)將2014年該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為年廣告費(fèi)用a萬(wàn)元的函數(shù);
(產(chǎn)品的利潤(rùn)=銷售收入-產(chǎn)品成本-廣告費(fèi)用)
(2)該廠家2014年的廣告費(fèi)用為多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知曲線$y=\frac{e}{x}$上一點(diǎn)P(1,e)處的切線分別交x軸、y軸于A,B兩點(diǎn),O為原點(diǎn),則△OAB的面積為(  )
A.2eB.eC.e2D.2e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知sin(π+α)=$\frac{3}{5}$且α是第三象限的角,則cos(α-2π)的值是(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.±$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,E,F(xiàn),G分別是四面體ABCD的棱BC、CD、DA的中點(diǎn),則此四面體與過(guò)E,F(xiàn),G的截面平行的棱的條數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=ax+$\frac{1}{x}$.
(1)從區(qū)間(-2,2)內(nèi)任取一個(gè)實(shí)數(shù)a,設(shè)事件A表示“函數(shù)y=f(x)-2在區(qū)間(0,+∞)上有兩個(gè)不同的零點(diǎn)”,求事件A發(fā)生的概率;
(2)若連續(xù)擲兩次一顆均勻的骰子(骰子六個(gè)面上標(biāo)注的點(diǎn)數(shù)分別為1,2,3,4,5,6)得到的點(diǎn)數(shù)分別為a和b,記事件B表示“f(x)>b在x∈(0,+∞)上恒成立”,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.向△ABC內(nèi)任意投一點(diǎn)P,若△ABC面積為s,則△PBC的面積小于等于$\frac{s}{2}$的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}滿足${a_{n+1}}-{a_n}=4n+1({n∈{N^*}})$,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若${b_n}=\frac{{4n({n+1})}}{{{a_n}{a_{n+1}}}}({n∈{N^*}})$,設(shè)數(shù)列{bn}的前n項(xiàng)和Sn,證明$\frac{4}{3}≤{S_n}<2$.

查看答案和解析>>

同步練習(xí)冊(cè)答案