18.若y=f(x)的導(dǎo)函數(shù)在區(qū)間[0,2π]上的圖象如圖所示,則f(x)的圖象可能是( 。
A.B.C.D.

分析 根據(jù)函數(shù)的導(dǎo)數(shù)f′(x)為正值,可得函數(shù)f(x)單調(diào)遞增,且增長速度先是變快,后又變慢,結(jié)合所給的選項,得出結(jié)論.

解答 解:根據(jù)y=f(x)的導(dǎo)函數(shù)在區(qū)間[0,2π]上的圖象,可得原函數(shù)f(x)在[0,π]上的增長速度不斷加快,
在[π,2π]上的增長速度又不斷減小,
結(jié)合所給的選項,
故選:A.

點評 本題主要考查函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等比數(shù)列{an}中,a5=2,a6=5,則數(shù)列{lgan}的前10項的和為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.復(fù)數(shù)z=$\frac{-3+i}{2+i}$的模是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A,B,C的對邊分別為a,b,c,已知向量$\overrightarrow p$=(a,sinB+sinC),$\overrightarrow q$=(sinA-sinB,b-c),且$\overrightarrow p$⊥$\overrightarrow q$
(1)求角C;
(2)若邊c=$\sqrt{3}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知圓x2+y2+2x-4y+1=0上任一點A關(guān)于直線x-ay+2=0對稱的點A'仍在該圓上,則a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.${∫}_{0}^{1}$($\sqrt{1-{x}^{2}}$+x+x3)dx=$\frac{π+3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.?dāng)?shù)列{an}滿足a1=1,an=$\frac{{a}_{n-1}}{{a}_{n-1+1}}$(n≥2),則數(shù)列{an•an+1}的前10項和為( 。
A.$\frac{9}{10}$B.$\frac{10}{11}$C.$\frac{11}{10}$D.$\frac{12}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{x}{e^x}$.
(I)求f(x)的極值;
(II)求證:當(dāng)x<1時,f(x)<f(2-x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$\overrightarrow{a}$=(sin53°cos23°,cos23°cos53°),$\overrightarrow$=(-cos53°sin23°,sin23°sin53°),$\overrightarrow{c}$=(1,t),$\overrightarrow{c}$∥($\overrightarrow{a}$+$\overrightarrow$),則t值為$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案