4.對于曲線C:$\frac{{x}^{2}}{4-k}$+$\frac{{y}^{2}}{k-1}$=1,給出下面四個(gè)命題:
①曲線C不可能表示橢圓;
②“1<k<4”是“曲線C表示橢圓”的充分不必要條件;
③“曲線C表示雙曲線”是“k<1或k>4”的必要不充分條件;
④“曲線C表示焦點(diǎn)在x軸上的橢圓”是“1<k<$\frac{5}{2}$”的充要條件
其中真命題的個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

分析 根據(jù)曲線方程的特點(diǎn),結(jié)合橢圓雙曲線的標(biāo)準(zhǔn)方程分別判斷即可.

解答 解:①當(dāng)1<k<4且k≠2.5時(shí),曲線表示橢圓,所以①錯(cuò)誤;
②當(dāng)k=2.5時(shí),4-k=k-1,此時(shí)曲線表示圓,所以②錯(cuò)誤.
③若曲線C表示雙曲線,則(4-k)(k-1)<0,解得k>4或k<1,所以“曲線C表示雙曲線”是“k<1或k>4”的充分必要條件,所以③不正確.
④若曲線C表示焦點(diǎn)在x軸上的橢圓,則$\left\{\begin{array}{l}{k-1>0}\\{4-k>0}\\{4-k>k-1}\end{array}\right.$,解得1<k<2.5,所以④正確.
故選B.

點(diǎn)評 本題主要考查圓錐曲線的方程,根據(jù)橢圓和雙曲線的標(biāo)準(zhǔn)方程和定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-3t+2}\\{y=4t+1}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸(兩坐標(biāo)系取區(qū)間的長度單位)的極坐標(biāo)系中,曲線C2:ρ=2sinθ.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)M,N分別是曲線C1和曲線C2上的動點(diǎn),求|MN|最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,已知P、Q是單位正方體ABCD-A1B1C1D1的面A1B1BA和面ABCD對角線上的點(diǎn),且A1P=AQ,證明:PQ∥平面BCC1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,a,b,c分別是角A,B,C的對邊,且滿足acosA=bcosB,那么△ABC的形狀一定是等腰或直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線x-2y+2=0與圓C:x2+y2-4y+m=0相交,截得的弦長為$\frac{{2\sqrt{5}}}{5}$.
(1)求圓C的方程;
(2)已知P(2,4),過P向圓C引兩條切線分別與拋物線y=x2交與點(diǎn)Q、R(異于R點(diǎn)),判斷直線QR與圓C的位置關(guān)系,并加以說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知實(shí)數(shù)x,y滿足方程(x-3)2+(y-3)2=6,求
(I)$\frac{y}{x}$的最大值與最小值;
(Ⅱ)$\sqrt{(x-2)^{2}+{y}^{2}}$的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=asinx-bcosx(其中a,b為正實(shí)數(shù))的圖象關(guān)于直線$x=-\frac{π}{6}$對稱,且?x1,x2∈R,x1≠x2,f(x1)f(x2)≤4恒成立,則下列結(jié)論正確的是( 。
A.$a=\sqrt{3}$,b=1
B.函數(shù)f(x)在區(qū)間$[{\frac{π}{6},π}]$上單調(diào)遞增
C.函數(shù)f(x)的圖象的一個(gè)對稱中心為$({\frac{2}{3}π,0})$
D.不等式f(x1)f(x2)≤4取到等號時(shí)|x2-x1|的最小值為2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)求過直線x-2y+3=0和2x+y-4=0的交點(diǎn),斜率為1 的直線方程;
(2)過點(diǎn)A(-1,2)的直線l的傾斜角β是直線l1:2x-y+1=0的傾斜角α的2倍,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ是常數(shù),A>0,ω>0).若f(x)在區(qū)間[$\frac{π}{4}$,$\frac{3π}{4}$]上具有單調(diào)性,且f($\frac{3π}{4}$)=f($\frac{11π}{12}$)=-f($\frac{π}{4}$).則f(x)的最小正周期為$\frac{4π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案