分析 設(shè)直線AB的方程為x=my+1,代入拋物線y2=4x,可得y2-4my-4=0,|EG|=$\frac{1}{2}$y2-2y1=$\frac{1}{2}$y2+$\frac{8}{{y}_{2}}$,利用基本不等式即可得出結(jié)論.
解答 解:設(shè)直線AB的方程為x=my+1,代入拋物線y2=4x,可得y2-4my-4=0,
設(shè)A(x1,y1),B(x2,y2),則y1+y2=4m,y1y2=-4,
∴|EG|=$\frac{1}{2}$y2-2y1=$\frac{1}{2}$y2+$\frac{8}{{y}_{2}}$≥4,當(dāng)且僅當(dāng)y2=4時,取等號,即|EG|的最小值為4,
故答案為4.
點評 本題考查|EG|的最小值的求法,具體涉及到拋物線的簡單性質(zhì),直線與拋物線的位置關(guān)系,解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進行等價轉(zhuǎn)化.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -5 | B. | 2 | C. | 5 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5π}{6}$或 $\frac{π}{6}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com