12.假設(shè)行列式的計算公式:$|\begin{array}{l}{a}&\\{c}&ksgugs0\end{array}|$=ad-bc,若f(x)=$|\begin{array}{l}{x}&{x}\\{3}&{{x}^{2}}\end{array}|$,則函數(shù)f(x)的單調(diào)減區(qū)間為( 。
A.$(-\sqrt{3},\sqrt{3})$B.(-1,1)C.$(-\sqrt{2},\sqrt{2})$D.(-2,2)

分析 根據(jù)題意,由行列式的計算公式可得函數(shù)f(x)的解析式,對其求導(dǎo)可得f′(x)=3x2-3=3(x2-1),令其導(dǎo)數(shù)小于0可得3(x2-1)<0,解可得x的取值范圍,即可得答案.

解答 解:根據(jù)題意,f(x)=$|\begin{array}{l}{x}&{x}\\{3}&{{x}^{2}}\end{array}|$=x×x2-3x=x3-3x,
對其求導(dǎo)可得:f′(x)=3x2-3=3(x2-1),
令f′(x)=3(x2-1)<0,
解可得-1<x<1,即函數(shù)f(x)的單調(diào)減區(qū)間為(-1,1);
故選:B.

點(diǎn)評 本題考查利用函數(shù)的導(dǎo)數(shù)判定函數(shù)單調(diào)性,關(guān)鍵是求出函數(shù)f(x)的解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.GZ新聞臺做“一校一特色”訪談節(jié)目,分A,B,C三期播出,A期播出兩間學(xué)校,B期,C期各播出1間學(xué)校,現(xiàn)從8間候選學(xué)校中選出4間參與這三項(xiàng)任務(wù),不同的選法共有( 。
A.140種B.420種C.840種D.1680種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知復(fù)數(shù)z1=cosα+isinα,z2=cosβ+isinβ,則復(fù)數(shù)z1•z2的實(shí)部是cos(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<5}\\{f(x-1),x≥5}\end{array}\right.$,f(6)的值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若直線3x-4y+5=0與圓x2+y2=r2(r>0)相交于A,B兩點(diǎn)且∠AOB=120°則r=( 。
A.1B.2C.$\frac{{2\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.以下給出關(guān)于向量的四個結(jié)論:
①$\overrightarrow a•\overrightarrow b-\overrightarrow b•\overrightarrow a=0$;     
②$(\overrightarrow a+\overrightarrow b)•\overrightarrow c=\overrightarrow a•\overrightarrow c+\overrightarrow b•\overrightarrow c$;     
③$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a|•|\overrightarrow b|$;
④若$|\overrightarrow a|≠|(zhì)\overrightarrow b|$,則$\overrightarrow a≠\overrightarrow b$;
其中正確結(jié)論的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在四個函數(shù)y=sin|2x|,y=|sinx|,y=sin(2x+$\frac{π}{6}$),y=tan(2x-$\frac{π}{4}$)中,最小正周期為π的所有函數(shù)個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知全集U={1,2,3,4,5},A={1,3},B={2,4},則∁U(A∪B)=(  )
A.5B.{5}C.D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,在邊長為2的正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A′,O為A′D的中點(diǎn),連接EF,EO,F(xiàn)O.

(Ⅰ)求證:A′D⊥EF;
(Ⅱ)求直線BD與平面OEF所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案