8.已知直線(xiàn)l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),曲線(xiàn)C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)).
(1)設(shè)l與C1相交于A,B兩點(diǎn),求|AB|;
(2)若把曲線(xiàn)C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的$\sqrt{3}$倍,縱坐標(biāo)伸長(zhǎng)為原來(lái)的3倍,得到曲線(xiàn)C2,設(shè)點(diǎn)P是曲線(xiàn)C2上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)l的距離的最大值.

分析 (1)利用sin2θ+cos2θ=1消去參數(shù)可得曲線(xiàn)C1的普通方程,與直線(xiàn)l聯(lián)立方程組求解A,B坐標(biāo),兩點(diǎn)之間的距離公式可得|AB的長(zhǎng)度.
(2)由題意得曲線(xiàn)C2的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=3sinθ\end{array}\right.$(θ是參數(shù)),設(shè)點(diǎn)$P(\sqrt{3}cosθ,3sinθ)$,點(diǎn)到直線(xiàn)的距離公式,利用三角函數(shù)的有界限,可得距離的最大值.

解答 解:(1)由題意,消去參數(shù)t,得直線(xiàn)l的普通方程為$y=\sqrt{3}(x-1)$,
根據(jù)sin2θ+cos2θ=1消去參數(shù),曲線(xiàn)C1的普通方程為x2+y2=1,
聯(lián)立得$\left\{\begin{array}{l}y=\sqrt{3}(x-1)\\{x^2}+{y^2}=1\end{array}\right.$解得A(1,0),$B(\frac{1}{2},-\frac{{\sqrt{3}}}{2})$,
∴|AB|=1.
(2)由題意得曲線(xiàn)C2的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=3sinθ\end{array}\right.$(θ是參數(shù)),設(shè)點(diǎn)$P(\sqrt{3}cosθ,3sinθ)$,
∴點(diǎn)P到直線(xiàn)l的距離$d=\frac{{|3cosθ-3sinθ-\sqrt{3}|}}{2}$=$\frac{1}{2}|3\sqrt{2}sin(θ-\frac{π}{4})+\sqrt{3}|$,
當(dāng)$sin(θ-\frac{π}{4})=1$時(shí),${d_{max}}=\frac{{3\sqrt{2}+\sqrt{3}}}{2}$.
∴曲線(xiàn)C2上的一個(gè)動(dòng)點(diǎn)它到直線(xiàn)l的距離的最大值為$\frac{3\sqrt{2}+\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題考查了直角坐標(biāo)方程與極坐標(biāo)、參數(shù)方程之間的轉(zhuǎn)換,考查了參數(shù)方程的幾何意義.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,b2-c2+2a=0,$\frac{tanC}{tanB}$=3,則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在極坐標(biāo)系中,圓ρ=8sinθ上的點(diǎn)到直線(xiàn)θ=$\frac{π}{3}$(ρ∈R)距離的最大值是( 。
A.-4B.-7C.1D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.log${\;}_{\frac{1}{2}}$3,($\frac{1}{3}$)0.2,2${\;}^{\frac{1}{3}}$三個(gè)數(shù)中最大的數(shù)是2${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合M={(x,y)|y=f(x)},若對(duì)于任意實(shí)數(shù)對(duì)(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,則稱(chēng)集合M是“垂直對(duì)點(diǎn)集”,給出下列四個(gè)集合:
①M(fèi)={(x,y)|y=$\frac{1}{{x}^{2}}$};
②M={(x,y)|y=sinx+1};
③={(x,y)|y=2x-2};
④M={(x,y)|y=log2x}
其中是“垂直對(duì)點(diǎn)集”的序號(hào)是( 。
A.②③④B.①②④C.①③④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若雙曲線(xiàn)mx2+2y2=2的虛軸長(zhǎng)為4,則該雙曲線(xiàn)的焦距為( 。
A.$2\sqrt{5}$B.$\sqrt{5}$C.$2\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知A,B,C是球O的球面上三點(diǎn),若三棱錐O-ABC體積的最大值為1,則球O的體積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知$\frac{sinBsinC}{sinA}$=$\frac{3\sqrt{7}}{2}$,b=4a,a+c=5,則△ABC的面積為$\frac{3\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)全集為R,集合A={x|x2+3x≤0},則∁RA=( 。
A.{x|x<-3或x>0}B.{x|x≤3或x≥0}C.{x|-3<x<0}D.{x|-3≤x≤0}

查看答案和解析>>

同步練習(xí)冊(cè)答案