17.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,6)
(Ⅰ)求$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(Ⅱ)若$\overrightarrow{c}$與$\overrightarrow$共線,且$\overrightarrow{a}$-$\overrightarrow{c}$與$\overrightarrow{a}$垂直,求$\overrightarrow{c}$.

分析 (Ⅰ)由向量的夾角公式計算即可,
(Ⅱ)根據(jù)共線和向量垂直即可求出.

解答 解:(Ⅰ)∵$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,6),
∴|$\overrightarrow{a}$|=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,|$\overrightarrow$|=$\sqrt{{(-2)}^{2}+{6}^{2}}$=2$\sqrt{10}$,$\overrightarrow{a}•\overrightarrow$=-2+12=10,
∴cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{10}{\sqrt{5}×2\sqrt{10}}$=$\frac{\sqrt{2}}{2}$,
∴θ=45°
(Ⅱ)∵$\overrightarrow{c}$與$\overrightarrow$共線,
∴可設(shè)$\overrightarrow{c}$=λ$\overrightarrow$=(-2λ,6λ),
∴$\overrightarrow{a}$-$\overrightarrow{c}$=(1+2λ,2-6λ),
∵$\overrightarrow{a}$-$\overrightarrow{c}$與$\overrightarrow{a}$垂直,
∴(1+2λ)+2(2-6λ)=0,
解得λ=$\frac{1}{2}$,
∴$\overrightarrow{c}$=(-1,3)

點評 本題考查平面向量的夾角公式和向量共線和向量垂直,考查了計算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.把半橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(x≥0)與圓。▁-c)2+y2=a2(x<0)合成的曲線稱作“曲圓”,其中F(c,0)為半橢圓的右焦點.如圖,A1,A2,B1,B2
分別是“曲圓”與x軸、y軸的交點,已知∠B1FB2=$\frac{2π}{3}$,扇形FB1A1B2的面
積為$\frac{4π}{3}$.
(1)求a,c的值; 
(2)過點F且傾斜角為θ的直線交“曲圓”于P,Q兩點,試將△A1PQ的周長L表示為θ的函數(shù);
(3)在(2)的條件下,當(dāng)△A1PQ的周長L取得最大值時,試探究△A1PQ的面積是否為定值?若是,請求出該定值;若不是,請求出面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x2-2ax+1.
(1)若對任意的實數(shù)x都有f(1+x)=f(1-x)成立,求實數(shù) a的值;
(2)若f(x)在區(qū)間[1,+∞)上為單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(3)當(dāng)x∈[-1,1]時,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,在平行四邊形ABCD中,$\overrightarrow{AC}$=(3,2),$\overrightarrow{BD}$=(-1,2),則$\overrightarrow{AC}$•$\overrightarrow{AD}$等于( 。
A.1B.6C.-7D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若tanα=2,tanβ=$\frac{3}{4}$,則tan(α-β)等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)角α的終邊與單位圓相交于點P(-$\frac{3}{5}$,$\frac{4}{5}$),則sinα-cosα的值是( 。
A.-$\frac{7}{5}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知定義在(1,+∞)上的函數(shù)f(x)滿足下列兩個條件:(1)對任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)當(dāng)x∈(1,2)時,f(x)=-x2+2x.記函數(shù)g(x)=f(x)-k(x-1),若函數(shù)g(x)恰有兩個零點,則實數(shù)k的取值范圍是( 。
A.[1,2)B.[$\frac{4}{3}$,2)C.($\frac{4}{3}$,2)D.[$\frac{4}{3}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x∈M}\\{{x}^{2},x∈P}\end{array}\right.$其中M∪P=R,則下列結(jié)論中一定正確的是( 。
A.函數(shù)f(x)一定存在最大值B.函數(shù)f(x)一定存在最小值
C.函數(shù)f(x)一定不存在最大值D.函數(shù)f(x)一定不存在最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)復(fù)數(shù)z=lg(m2-2m-2)+(m2+3m+2)i,試問實數(shù)m取何值時,復(fù)數(shù)z
(1)為純虛數(shù)
(2)為實數(shù)
(3)對應(yīng)的點在復(fù)平面的第四象限.

查看答案和解析>>

同步練習(xí)冊答案