12.下列函數(shù)中,與函數(shù)y=x相同的是( 。
A.y=$\frac{{x}^{2}}{x}$B.y=($\sqrt{x}$)2C.y=lg 10xD.$y={2^{{{log}_{2}}x}}$

分析 根據(jù)兩個函數(shù)的定義域相同,對應關系也相同,判斷它們是同一函數(shù)即可.

解答 解:由題意,函數(shù)y=x的定義域為R.
對于A:y=$\frac{{x}^{2}}{x}$定義域為{x|x≠0}他們的定義域不相同,∴不是同一函數(shù);
對于B:y=($\sqrt{x}$)2定義域為{x|x≥0}他們的定義域不相同,∴不是同一函數(shù);
對于C:y=lg 10x=x,定義域為R,他們的定義域相同,對應關系也相同,∴是同一函數(shù);
對于D:$y={2^{{{log}_{2}}x}}$定義域為{x|x>0},他們的定義域不相同,∴不是同一函數(shù);
故選:C.

點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知n為正整數(shù),數(shù)列{an}滿足an>0,$4({n+1}){a_n}^2-n{a_{n+1}}^2=0$,設數(shù)列{bn}滿足${b_n}=\frac{{{a_n}^2}}{t^n}$
(1)求證:數(shù)列$\left\{{\frac{a_n}{{\sqrt{n}}}}\right\}$為等比數(shù)列;
(2)若數(shù)列{bn}是等差數(shù)列,求實數(shù)t的值;
(3)若數(shù)列{bn}是等差數(shù)列,前n項和為Sn,對任意的n∈N*,均存在m∈N*,使得8a12Sn-a14n2=16bm成立,求滿足條件的所有整數(shù)a1的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知條件p:|x+1|>2,條件q:x>a,且¬p是¬q的充分不必要條件,則a的取值范圍是( 。
A.a≤1B.a≤-3C.a≥-1D.a≥1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,a+b=3.
(1)求橢圓C的方程;
(2)如圖,A,B,D是橢圓C的頂點,P是橢圓C上除頂點外的任意一點,直線DP交x軸于點N,直線AD交BP于點M,設MN的斜率為m,BP的斜率為n,證明:2m-n為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.下列命題:
①“四邊相等的四邊形是正方形”的否命題;
②“梯形不是平行四邊形”的逆否命題;
③“若ac2>bc2,則a>b”的逆命題.
其中真命題是①②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知向量$\overrightarrow a•(\overrightarrow a+2\overrightarrow b)=0$,$|\overrightarrow a|=|\overrightarrow b|=2$,則向量$\overrightarrow a,\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.一個袋中裝有大小相同,編號分別為1,2,3,4,5,6,7,8的八個球,從中有放回地每次取一個球,共取2次,則取得兩個球的編號和小于15的概率為( 。
A.$\frac{29}{32}$B.$\frac{63}{64}$C.$\frac{31}{32}$D.$\frac{61}{64}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.由代數(shù)式的乘法法則類比推導向量的數(shù)量積的運算法則:
①“mn=nm”類比得到“$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{a}$”;
②“(m+n)t=mt+nt”類比得到“($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$”;
③“t≠0,mt=nt⇒m=n”類比得到“$\overrightarrow{c}$≠0,$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$⇒$\overrightarrow{a}$=$\overrightarrow$”;
④“|m•n|=|m|•|n|”類比得到“|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|”;
⑤“(m•n)t=m(n•t)”類比得到“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$•$\overrightarrow{c}$)”;
⑥“$\frac{ac}{bc}$=$\frac{a}$”類比得到$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow}$.以上的式子中,類比得到的結論正確的是①②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.關于函數(shù)f(x)=4sin(2x+$\frac{π}{3}$)(x∈R),有下列說法:
①函數(shù)y=f(x)的圖象向右平移$\frac{π}{3}$個單位后得到的圖象關于原點對稱;
②函數(shù)y=f(x)是以2π為最小正周期的周期函數(shù);
③函數(shù)y=f(x)的圖象關于點$({-\frac{π}{6},0})$對稱;
④函數(shù)y=f(x)的圖象關于直線x=$\frac{π}{6}$對稱.
其中正確的是③.(填上所有你認為正確的序號)

查看答案和解析>>

同步練習冊答案