9.如圖,四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,AD=2BC,過(guò) A1,C,D三點(diǎn)的平面記為α,BB1與α的交點(diǎn)為Q.
(1)證明:Q為BB1的中點(diǎn);
(2)若A1A=4,CD=2,梯形 ABCD的面積為6,求平面α與底面ABCD所成角的大。

分析 (1)由已知得平面QBC∥平面A1AD,從而QC∥A1D,由此能證明Q為BB1的中點(diǎn);
(2)在△ADC中,作AE⊥DC,垂足為E,連接A1E,∠AEA1為平面α與底面ABCD所成二面角的平面角,由此求出平面α與底面ABCD所成二面角的大。

解答 (1)證明:∵BQ∥AA1,BC∥AD,
BC∩BQ=B,AD∩AA1=A,
∴平面QBC∥平面A1AD,
從而平面A1CD與這兩個(gè)平面的交線相互平行,
即QC∥A1D.
故△QBC與△A1AD的對(duì)應(yīng)邊相互平行,
于是△QBC∽△A1AD,
∴$\frac{BQ}{BB1}$=$\frac{BQ}{AA1}$=$\frac{BC}{AD}$=$\frac{1}{2}$,即Q為BB1的中點(diǎn);               
(2)解:如圖所示,在△ADC中,作AE⊥DC,垂足為E,連接A1E.
又DE⊥AA1,且AA1∩AE=A,
∴DE⊥平面AEA1,∴DE⊥A1E.
∴∠AEA1為平面α與底面ABCD所成二面角的平面角.

∵BC∥AD,AD=2BC,∴S△ADC=2S△BCA
又∵梯形ABCD的面積為6,DC=2,
∴S△ADC=4,AE=4.
于是tan∠AEA1=$\frac{AA1}{AE}$=1,∠AEA1=$\frac{π}{4}$.
故平面α與底面ABCD所成二面角的大小為$\frac{π}{4}$.

點(diǎn)評(píng) 本題考查面面平行的性質(zhì),考查四棱柱被平面α所分成上下兩部分的體積之比的求法,考查二面角的大小的求法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若關(guān)于x的不等式ax2+3x-1<0的解集是$({-∞,\frac{1}{2}})∪({1,+∞})$,
(1)求a的值;
(2)求不等式ax2-3x+a2+1>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.f(x)為R上奇函數(shù),當(dāng)x≥0時(shí),f(x)=x+1,則當(dāng)x<0時(shí),f(x)=x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.以下函數(shù)在R上為減函數(shù)的是( 。
A.y=log${\;}_{\frac{1}{2}}$xB.y=x-1C.y=($\frac{1}{2}$)xD.y=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖所示,ABCD-A1B1C1D1是棱長(zhǎng)為6的正方體,E,F(xiàn)分別是棱AB,BC上的動(dòng)點(diǎn),且AE=BF.當(dāng)A1,E,F(xiàn),C1共面時(shí),平面A1DE與平面C1DF所成銳二面角的余弦值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{1}{5}$D.$\frac{2\sqrt{6}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.執(zhí)行如圖所示的偽代碼,則輸出的結(jié)果為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)于任意的x都有f(x)=f(x+2),當(dāng)x∈[0,1]時(shí),f(x)=x+1,則f($\frac{3}{2}$)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足f′(x1)=$\frac{f(b)-f(a)}{b-a}$,f′(x2)=$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”,已知函數(shù)f(x)=2x3-x2+m是[0,2a]上“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是$({\frac{1}{8},\frac{1}{4}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y均有f(x)•f(y)=f(x+y),且對(duì)于任意的x都有f(x)>0,且當(dāng)x<0時(shí)f(x)>1.
(1)求證:f(x)為R上的減函數(shù);
(2)當(dāng)f(4)=$\frac{1}{16}$時(shí),若f(x2-3x+2)≤$\frac{1}{4}$,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案