A. | 0<e≤$\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$≤e<1 | C. | $\frac{\sqrt{3}}{2}$<e<1 | D. | $\frac{\sqrt{3}}{2}$≤e<1 |
分析 由題意可知:由橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)焦點(diǎn)在x軸上,由圖可知:O、P、A、B四點(diǎn)共圓,∠APB=60°,則∠APO=∠BPO=30°,cos∠AOP=$\frac{丨OP丨}$=$\frac{1}{2}$,|OP|=2b,因此b<|OP|≤a,即2b≤a,由a2=b2+c2,可得3a2≤4c2,e≥$\frac{\sqrt{3}}{2}$,又0<e<1,即可求得橢圓的離心率e的取值范圍.
解答 解:由橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)焦點(diǎn)在x軸上,
連接OA,OB,OP,依題意,O、P、A、B四點(diǎn)共圓,
∵∠APB=60°,
∠APO=∠BPO=30°,
在直角三角形OAP中,∠AOP=60°,
∴cos∠AOP=$\frac{丨OP丨}$=$\frac{1}{2}$,
∴|OP|=$\frac{\frac{1}{2}}$=2b,
∴b<|OP|≤a,
∴2b≤a,
∴4b2≤a2,
由a2=b2+c2,即4(a2-c2)≤a2,
∴3a2≤4c2,
即$\frac{{c}^{2}}{{a}^{2}}$≥$\frac{3}{4}$,
∴e≥$\frac{\sqrt{3}}{2}$,又0<e<1,
∴$\frac{\sqrt{3}}{2}$≤e<1,
∴橢圓C的離心率的取值范圍是$\frac{\sqrt{3}}{2}$≤e<1.
故選D.
點(diǎn)評(píng) 本題考查橢圓的離心率,考查四點(diǎn)共圓的性質(zhì)及三角函數(shù)的概念,考查轉(zhuǎn)化與方程思想,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{7}{4}$ | C. | $\frac{23}{12}$ | D. | $\frac{49}{24}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 左平移$\frac{π}{12}$ | B. | 左平移$\frac{π}{6}$ | C. | 右平移$\frac{π}{12}$ | D. | 右平移$\frac{π}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com