10.在平面直角坐標(biāo)系xoy中,橢圓C的中心為原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,離心率為$\frac{\sqrt{2}}{2}$,與過F1的直線交于A,B兩點(diǎn),且△ABF2的周長為16,那么橢圓C的方程為( 。
A.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1C.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{6}$=1

分析 根據(jù)題意,作出橢圓的圖形分析可得|AB|+|AF2|+|BF2|=|AF1|+|BF1|+|AF2|+|BF2|=4a=16,解可得a的值,又由其離心率可得e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,解可得c的值,計算可得b的值,將a、b的值代入橢圓標(biāo)準(zhǔn)方程即可得答案.

解答 解:根據(jù)題意,如圖:
△ABF2的周長為16,則有|AB|+|AF2|+|BF2|=|AF1|+|BF1|+|AF2|+|BF2|=4a=16,則a=4,
又由其離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,則c=2$\sqrt{2}$,b2=a2-c2=16-8=8;
又由其焦點(diǎn)在x軸上,則其標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{8}$=1;
故選:A.

點(diǎn)評 本題考查橢圓的幾何性質(zhì),關(guān)鍵是由△ABF2的周長求出a的值.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊且asinB=$\sqrt{3}$bcosA
(1)求A
(2)若a=3,b=2c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=-$\frac{4}{5}$x-cosx在[0,$\frac{π}{4}$]上的最大值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知球的直徑SC=2$\sqrt{5}$,A,B是該球球面上的兩點(diǎn),若AB=2,∠ASC=∠BSC=45°,則棱錐S-ABC的表面積為( 。
A.22B.16C.12D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,三棱柱ABE-DCF中,△EAB是正三角形,四邊形ABCD是矩形,且EA=2,BC=2$\sqrt{3}$,EC=4.
(1)求證:平面EAB⊥平面ABCD;
(2)若點(diǎn)P在線段EA上,且PA=λEA(0<λ<1),當(dāng)三棱錐B-APD的體積為$\frac{3}{2}$時,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$,其圖象相鄰兩條對稱軸之間的距離為$\frac{π}{2}$,且函數(shù)$f(x+\frac{π}{12})$是偶函數(shù),則下列判斷正確的是( 。
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)在區(qū)間$[\frac{3π}{4},π]$上單調(diào)遞增
C.函數(shù)f(x)的圖象關(guān)于直線$x=-\frac{7π}{12}$對稱
D.函數(shù)f(x)的圖象關(guān)于點(diǎn)$(\frac{7π}{12},0)$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=9x3-ln|x|的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{αn}滿足${a_1}=1,{a_2}=2,{a_{n+2}}=({1+{{cos}^2}\frac{nπ}{2}}){a_n}+{sin^2}\frac{nπ}{2}$,則該數(shù)列的前21項(xiàng)的和為2112.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在所有棱長都相等的三棱錐A-BCD中,P、Q分別是AD、BC的中點(diǎn),點(diǎn)R在平面ABC內(nèi)運(yùn)動,若直線PQ與直線DR成30°角.則R在平面ABC內(nèi)的軌跡是( 。
A.雙曲線B.橢圓C.D.直線

查看答案和解析>>

同步練習(xí)冊答案