分析 a1=1,a2=2,an+2=(1+cos2$\frac{nπ}{2}$)an+sin2$\frac{nπ}{2}$,可得a3=a1+1=2,a4=2a2=4,…,a2k-1=a2k-3+1,a2k=2a2k-2,(k∈N*,k≥2).因此數(shù)列{a2k-1}成等差數(shù)列,數(shù)列{a2k}成等比數(shù)列.利用等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:∵a1=1,a2=2,an+2=(1+cos2$\frac{nπ}{2}$)an+sin2$\frac{nπ}{2}$,
∴a3=a1+1=2,
a4=2a2=4,
…,
a2k-1=a2k-3+1,
a2k=2a2k-2,(k∈N*,k≥2).
∴數(shù)列{a2k-1}成等差數(shù)列,數(shù)列{a2k}成等比數(shù)列.
∴該數(shù)列的前21項(xiàng)和為=(a1+a3+…+a21)+(a2+a4+…+a20)
=(1+2+…+11)+(2+22+…+210)
=$\frac{11×(1+11)}{2}$+$\frac{2({2}^{10}-1)}{2-1}$=66+211-2=212.
故答案為:2112.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{8}$=1 | B. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1 | C. | $\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{6}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2-i | B. | 2+3i | C. | $\frac{1}{2}$-i | D. | $\frac{1}{2}+i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com