【題目】已知是由非負(fù)整數(shù)組成的無窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為,第n項(xiàng)之后的各項(xiàng)的最小值記為,設(shè).

1)若,是一個(gè)周期為4的數(shù)列,寫出的值;

2)設(shè)d為非負(fù)整數(shù),證明:)的充要條件是是公差為d的等差數(shù)列.

【答案】1;(2)證明見解析.

【解析】

1)根據(jù)定義依次找出即可求出的值;

2)根據(jù)定義分別證明充分性和必要性,d為非負(fù)整數(shù),是公差為d的等差數(shù)列,,易證出充分性,證明必要性先結(jié)合反證法證明數(shù)列不是遞減,再證明是等差數(shù)列.

1)若,是一個(gè)周期為4的數(shù)列,

,

;

2)充分性:設(shè)d為非負(fù)整數(shù), 是公差為d的等差數(shù)列,

,

所以;

必要性:設(shè)d為非負(fù)整數(shù),

,假設(shè)是第一個(gè)使的項(xiàng),

相矛盾,所以是一個(gè)不遞減的數(shù)列,

,即

所以是公差為d的等差數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對(duì)統(tǒng)計(jì)圖理解錯(cuò)誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務(wù)量同比增長(zhǎng)率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長(zhǎng)率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長(zhǎng)率逐月增長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,對(duì)一切,點(diǎn)都在函數(shù)的圖像上.

(1)證明:當(dāng)時(shí),;

(2)求數(shù)列的通項(xiàng)公式;

(3)設(shè)為數(shù)列的前n項(xiàng)的積,若不等式對(duì)一切成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為圓上一動(dòng)點(diǎn),圓心關(guān)于軸的對(duì)稱點(diǎn)為,點(diǎn)分別是線段上的點(diǎn),且.

(1)求點(diǎn)的軌跡方程;

(2)直線與點(diǎn)的軌跡只有一個(gè)公共點(diǎn),且點(diǎn)在第二象限,過坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于兩點(diǎn),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在正整數(shù)集上的函數(shù),且滿足:當(dāng)成立時(shí),總可推出 成立那么下列命題中正確的是(

A.成立,則當(dāng)時(shí)均有成立

B.成立,則當(dāng)時(shí)均有成立

C.成立,則當(dāng)時(shí)均有成立

D.成立,則當(dāng)時(shí)均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,M為△ABC的中線AD的中點(diǎn),過點(diǎn)M的直線分別交線段ABAC于點(diǎn)PQ兩點(diǎn),設(shè),,記.

1)求的值;

2)求函數(shù)的解析式(指明定義域);

3)設(shè),若對(duì)任意,總存在,使得成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,為橢圓的左、右焦點(diǎn),點(diǎn)在直線上且不在軸上,直線與橢圓的交點(diǎn)分別為,為坐標(biāo)原點(diǎn).

設(shè)直線的斜率為,證明:

問直線上是否存在點(diǎn),使得直線的斜率滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)a=2,求函數(shù)的極值;

(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)求使方程存在兩個(gè)實(shí)數(shù)解時(shí),的取值范圍;

2)設(shè),函數(shù).若對(duì)任意,總存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案