分析 根據(jù)函數(shù)f(x)圖象過點(0,$\sqrt{3}$)求出φ的值,寫出f(x)解析式,
再根據(jù)正弦函數(shù)的圖象與性質(zhì)求出f(x)在[0,π]上的單調(diào)減區(qū)間.
解答 解:函數(shù)f(x)=2sin(2x+φ)(0<φ<$\frac{π}{2}$)的圖象過點(0,$\sqrt{3}$),
∴f(0)=2sinφ=$\sqrt{3}$,
∴sinφ=$\frac{\sqrt{3}}{2}$;
又∵0<φ<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$,
∴f(x)=2sin(2x+$\frac{π}{3}$);
令$\frac{π}{2}$+2kπ≤2x+$\frac{π}{3}$≤$\frac{3π}{2}$+2kπ,k∈Z,
∴$\frac{π}{6}$+2kπ≤2x≤$\frac{7π}{6}$+2kπ,k∈Z,
解得$\frac{π}{12}$+kπ≤x≤$\frac{7π}{12}$+kπ,k∈Z;
令k=0,得函數(shù)f(x)在[0,π]上的單調(diào)減區(qū)間是[$\frac{π}{12}$,$\frac{7π}{12}$].
故答案為:[$\frac{π}{12}$,$\frac{7π}{12}$]【或($\frac{π}{12}$,$\frac{7π}{12}$)也正確】.
點評 本題考查了正弦函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $-\frac{1}{2}$ | C. | 5 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
雕刻量n | 210 | 230 | 250 | 270 | 300 |
頻數(shù) | 1 | 2 | 3 | 3 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com