8.若點(m,n)在直線$4x-3y-5\sqrt{2}=0$上,則m2+n2的最小值是( 。
A.2B.2$\sqrt{2}$C.4D.12

分析 m2+n2的最小值是原點到直線的距離的平方,利用點到直線的距離公式即可得出.

解答 解:∵點(m,n)在直線$4x-3y-5\sqrt{2}=0$上,
∴m2+n2的最小值是原點到直線的距離的平方=$(\frac{5\sqrt{2}}{\sqrt{{3}^{2}+{4}^{2}}})^{2}$=2.
故選:A.

點評 本題考查了點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.在平面直角坐標系xOy中,已知曲線C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(cosθ-2sinθ)=6.
(Ⅰ)寫出直線l的直角坐標方程和曲線C的參數(shù)方程;
(Ⅱ)在曲線C上求一點P,使點P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設(shè)向量$\overrightarrow a=(x,4)$,$\overrightarrow b=(7,-1)$,已知$|{\overrightarrow a{+}\overrightarrow b}|{=}|{\overrightarrow a}|$.
(I)求實數(shù)x的值;
(II)求$\overrightarrow a$與$\overrightarrow b$的夾角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.直線2x+y-2=0在x軸上的截距為( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知兩圓的方程分別為x2+y2-4x=0和x2+y2-4y=0公共弦所在直線方程是x-y=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若命題p:?x∈R,x2+1<0,則¬p:( 。
A.?x0∈R,x02+1>0B.?x0∈R,x02+1≥0C.?x∈R,x2+1>0D.?x∈R,x2+1≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)=$\frac{1}{3}{x^3}$-4x+4在區(qū)間[0,3]上的最大值與最小值分別是( 。
A.$1,-\frac{4}{3}$B.$4,-\frac{4}{3}$C.$4,\frac{4}{3}$D.$\frac{4}{3},-4$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}是等差數(shù)列,a3=5,a7=13,數(shù)列{bn}前n項和為Sn,且滿足Sn=2bn-1(n∈N*
(1)求數(shù)列{an},{bn}的通項公式;
(2)令cn=anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x),當x,y∈R時,恒有f(x+y)=f(x)+f(y).當x>0時,f(x)>0.
(1)求證:f(x)是奇函數(shù);
(2)若f(1)=$\frac{1}{2}$,試求f(x)在區(qū)間[-2,6]上的最值;
(3)是否存在m,使f(2log2x)2-4)+f(4m-2(log2x))>0對于任意x∈[1,2]恒成立?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案