20.函數(shù)f(x)=$\frac{1}{3}{x^3}$-4x+4在區(qū)間[0,3]上的最大值與最小值分別是( 。
A.$1,-\frac{4}{3}$B.$4,-\frac{4}{3}$C.$4,\frac{4}{3}$D.$\frac{4}{3},-4$

分析 先求導(dǎo)函數(shù),研究出函數(shù)在區(qū)間[0,3]上的單調(diào)性,從而確定出函數(shù)最值的位置,求出函數(shù)的最值.

解答 解:∵函數(shù)f(x)=$\frac{1}{3}{x^3}$-4x+4,
∴f′(x)=x2-4.x∈[0,3],
令f′(x)>0,解得3≥x>2;令f′(x)<0,解得0≤x<2
故函數(shù)在[0,2]上是減函數(shù),在[2,3]上是增函數(shù),
所以函數(shù)在x=2時(shí)取到最小值f(2)=$\frac{8}{3}$-8+4=-$\frac{4}{3}$,f(0)=4,f(3)=9-12+4=1
在x=0時(shí)取到最大值:4.
故選:B.

點(diǎn)評(píng) 本題重點(diǎn)考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的最值、單調(diào)性,解答本題關(guān)鍵是研究出函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)性確定出函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖所示,某幾何體的正視圖、側(cè)視圖均為等腰三角形,俯視圖是正方形,則該幾何體的體積是(  )
A.2B.4C.$\frac{{4\sqrt{2}}}{3}$D.$\frac{{8\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知命題p:9-x2>0,q:x2+x-6<0,則p是q的必要不充分條件(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中的一個(gè)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若點(diǎn)(m,n)在直線(xiàn)$4x-3y-5\sqrt{2}=0$上,則m2+n2的最小值是( 。
A.2B.2$\sqrt{2}$C.4D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列結(jié)論中正確的是( 。
A.a>b⇒a-c<b-cB.a>b⇒a2>b2C.a>b>0⇒$\frac{1}{a}<\frac{1}$D.a>b⇒ac2>bc2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知關(guān)于x的不等式(x-a)(x-a2)<0.
(1)當(dāng)a=2時(shí),求不等式的解集;
(2)當(dāng)a∈R,a≠0且a≠1時(shí),求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.${∫}_{1}^{e}$$\frac{ln{x}^{2}}{x}$dx=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知向量$\overrightarrow a=(2cosx,\sqrt{3}),\overrightarrow b=(sinx,cos2x)$,設(shè)f(x)=$\overrightarrow a•\overrightarrow b$,$g(x)=mcos(2x-\frac{π}{6})-2m+3(m>0)$,若對(duì)任意${x_1}∈[0,\frac{π}{4}]$都存在${x_2}∈[0,\frac{π}{4}]$,使得g(x1)=f(x2)成立.則實(shí)數(shù)m的取值范圍是( 。
A.$[\frac{2}{3},2)$B.$(\frac{2}{3},2]$C.$[1,\frac{4}{3}]$D.$(1,\frac{4}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=x2-2x+2,x∈[0,3],則函數(shù)的值域?yàn)閇1,5].

查看答案和解析>>

同步練習(xí)冊(cè)答案