已知F1、F2為雙曲線C:x²-y²=2的左、右焦點(diǎn),點(diǎn)P在C上,|PF1|=2|PF2|,則cos∠F1PF2=(     )
A.B.C.D.
C  

試題分析:設(shè)|PF1|=2|PF2|=2m,則根據(jù)雙曲線的定義,可得m=2,
∴|PF1|=4,,|PF2|=2,∵|F1F2|=4,
∴由余弦定理得,cos∠F1PF2=,故選C.
點(diǎn)評:小綜合題,本題綜合考查雙曲線的幾何性質(zhì),雙曲線的定義,余弦定理的應(yīng)用,對考生分析問題解決問題的能力,有較好的考查,比較典型。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線交橢圓兩點(diǎn),橢圓與軸的正半軸交于點(diǎn),若的重心恰好落在橢圓的右焦點(diǎn)上,則直線的方程是(      )
A. B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果方程表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)k的取值范圍是(   )
A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的右焦點(diǎn)為為常數(shù),離心率為,過焦點(diǎn)、傾斜角為的直線交橢圓與M,N兩點(diǎn),
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)=時(shí),=,求實(shí)數(shù)的值;
(3)試問的值是否與直線的傾斜角的大小無關(guān),并證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)的直線與拋物線交于兩點(diǎn),記線段的中點(diǎn)為,過點(diǎn)和這個(gè)拋物線的焦點(diǎn)的直線為,的斜率為,則直線的斜率與直線的斜率之比可表示為的函數(shù)        __   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,則此雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別是雙曲線的兩個(gè)焦點(diǎn),是以(為坐標(biāo)原點(diǎn))為圓心,為半徑的圓與該雙曲線左支的兩個(gè)交點(diǎn),且是等邊三角形,則雙曲線的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩條直線 :y="m" 和: y=(m>0),與函數(shù)的圖像從左至右相交于點(diǎn)A,B ,與函數(shù)的圖像從左至右相交于C,D .記線段AC和BD在X軸上的投影長度分別為a ,b ,當(dāng)m 變化時(shí),的最小值為
A.           B.        C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),橢圓左右焦點(diǎn)分別為,上頂點(diǎn)為,為等邊三角形.定義橢圓C上的點(diǎn)的“伴隨點(diǎn)”為.
(1)求橢圓C的方程;
(2)求的最大值;
(3)直線l交橢圓CA、B兩點(diǎn),若點(diǎn)A、B的“伴隨點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.橢圓C的右頂點(diǎn)為D,試探究ΔOAB的面積與ΔODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊答案