精英家教網 > 高中數學 > 題目詳情

某學校隨機抽取部分新生調查其上學路上所需時間(單位:分鐘),并將所得數據繪制成頻率分布直方圖(如圖),其中,上學路上所需時間的范圍是,樣本數據分組為,,,,.

(1)求直方圖中的值;
(2)如果上學路上所需時間不少于40分鐘的學生可申請在學校住宿,請估計學校1000名新生中有多少名學生可以申請住宿;

(1)0.025 (2)120  (3)

解析試題分析:
(1)根據頻率分布直方圖可以得到組距為20,而頻率分布直方圖的縱坐標與組距之積為頻率,則可以求的各組的頻率,又因為各組頻率之和為1,列出式子即可得到x的值.
(2)由第一問可得到每組的頻率,根據頻率分布直方圖可求出所需時間不少于40分鐘的學生包含兩個組的縱坐標,利用縱坐標與組距相乘即可得到所需時間不少于40分鐘的學生的頻率,頻率乘以總人數即可得到可以留宿學生的人數的估計值.
試題解析:
(1)由,          4分
          6分
(2)上學所需時間不少于40的學生的頻率為:
          8分
估計學校1000名新生中有:          11分
答:估計學校1000名新生中有250名學生可以申請住宿.       12分
考點: 頻率分布直方圖 頻率

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

“根據《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80 mg/100ml(不含80)之間,屬于酒后駕車,血液酒精濃度在80mg/100ml(含80)以上時,屬醉酒駕車.”某市交警在該市一交通崗前設點對過往的車輛進行抽查,經過一晚的抽查,共查出酒后駕車者60名,圖甲是用酒精測試儀對這60 名酒后駕車者血液中酒精濃度進行檢測后依所得結果畫出的頻率分布直方圖.

(1)統(tǒng)計方法中,同一組數據常用該組區(qū)間的中點值作為代表,圖乙的程序框圖是對這60名酒后駕車者血液的酒精濃度做進一步的統(tǒng)計,求出圖乙輸出的S的值,并說明S的統(tǒng)計意義;(圖乙中數據分別表示圖甲中各組的組中值及頻率)

(2)本次行動中,吳、李兩位先生都被酒精測試儀測得酒精濃度屬于70~90的范圍,但他倆堅稱沒喝那么多,是測試儀不準,交警大隊隊長決定在被酒精測試儀測得酒精濃度屬于70~90范圍的酒后駕車者中隨機抽出2人抽血檢驗,設為吳、李兩位先生被抽中的人數,求的分布列,并求吳、李兩位先生至少有1人被抽中的概率;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知某中學高三文科班學生共有800人參加了數學與地理的水平測試,現學校決定利用隨機數表法從中抽取100人進行成績抽樣調查,先將800人按001,002, ,800進行編號;
(1)如果從第8行第7列的數開始向右讀,請你依次寫出最先檢查的3個人的編號;
(下面摘取了第7行到第9行)

(2)抽取的100的數學與地理的水平測試成績如下表:
成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數學成績,例如:表中數學成績?yōu)榱己玫墓灿?0+18+4=42,若在該樣本中,數學成績優(yōu)秀率是30%,求a,b的值:

人數
數學
優(yōu)秀
良好
及格
地理
優(yōu)秀
7
20
5
良好
9
18
6
及格
a
4
b
(3)在地理成績及格的學生中,已知求數學成績?yōu)閮?yōu)秀的人數比及格的人數少的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在某批次的某種燈泡中,隨機地抽取個樣品,并對其壽命進行追蹤調查,將結果列成頻率分布表如下.根據壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.

壽命(天)
頻數
頻率















合計


(1)根據頻率分布表中的數據,寫出、的值;
(2)某人從燈泡樣品中隨機地購買了個,如果這個燈泡的等級情況恰好與按三個等級分層抽樣所得的結果相同,求的最小值;
(3)某人從這個批次的燈泡中隨機地購買了個進行使用,若以上述頻率作為概率,用表示此人所購買的燈泡中次品的個數,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

從某居民區(qū)隨機抽取10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數據資料,算得
,,,.
(1)求家庭的月儲蓄對月收入的線性回歸方程;
(2)判斷變量之間是正相關還是負相關;
(3)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
其中,為樣本平均值,線性回歸方程也可寫為
附:線性回歸方程中,,,

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了解某地區(qū)學生和包括老師、家長在內的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調查,就是否“取消英語聽力”的問題,調查統(tǒng)計的結果如下表:

態(tài)度

 

應該取消
應該保留
無所謂
在校學生
2100人
120人
y
社會人士
600人
x
z
已知在全體樣本中隨機抽取1人,抽到持“應該保留”態(tài)度的人的概率為0.05.
(1)現用分層抽樣的方法在所有參與調查的人中抽取360人進行問卷訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“應該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進行深入交流,求第一組中在校學生人數ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在某高校自主招生考試中,所有選報II類志向的考生全部參加了“數學與邏輯”和“閱讀與表達”兩個科目的考試,成績分為五個等級. 某考場考生的兩科考試成績數據統(tǒng)計如下圖所示,其中“數學與邏輯”科目的成績?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/1d/4/txrgh1.png" style="vertical-align:middle;" />的考生有人.

(1)求該考場考生中“閱讀與表達”科目中成績?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/03/3/kv4vy.png" style="vertical-align:middle;" />的人數;
(2)若等級分別對應分,分,分,分,分,求該考場考生“數學與邏輯”科目的平均分;
(3)已知參加本考場測試的考生中,恰有兩人的兩科成績均為. 在至少一科成績?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/03/3/kv4vy.png" style="vertical-align:middle;" />的考生中,隨機抽取兩人進行訪談,求這兩人的兩科成績均為的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

今年年初,我國多個地區(qū)發(fā)生了持續(xù)性大規(guī)模的霧霾天氣,給我們的身體健康產生了巨大的威脅。私家車的尾氣排放也是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力。為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調查情況進行整理后制成下表:

年齡(歲)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
頻數
5
10
15
10
5
5
贊成人數
4
6
9
6
3
4
(1)完成被調查人員的頻率分布直方圖;
(2)若從年齡在[15,25),[25,35)的被調查者中各隨機選取兩人進行進行追蹤調查,記選中的4人中不贊成“車輛限行”的人數為ξ,求隨機變量ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為考查某種藥物預防疾病的效果,進行動物試驗,得到如下丟失數據的列聯表:

 
患病
未患病
總計
沒服用藥
20
30
50
服用藥


50
總計


100
設從沒服用藥的動物中任取兩只,未患病數為;從服用藥物的動物中任取兩只,未患病數為,工作人員曾計算過.
(1)求出列聯表中數據的值; 
(2)能夠以99%的把握認為藥物有效嗎?參考公式:,其中;
①當K2≥3.841時有95%的把握認為、有關聯;
②當K2≥6.635時有99%的把握認為、有關聯.

查看答案和解析>>

同步練習冊答案