18.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若a4a5=3,則log3a1+log3a2+…+log3a8=( 。
A.1B.2C.4D.3

分析 利用導(dǎo)數(shù)的運(yùn)算法則化簡所求的和,通過等比數(shù)列的性質(zhì)求解即可.

解答 解:等比數(shù)列{an}中,每項(xiàng)均是正數(shù),a4a5=3,可得a4a5=a3a6=a2a7=a1a8=3,
則log3a1+log3a2+…+log3a8=log3(a1a2a3a4a5a6a7a8)=$lo{g}_{3}({a}_{4}{a}_{5})^{4}$=4.
故選:C.

點(diǎn)評 本題考查對數(shù)的運(yùn)算法則等比數(shù)列的性質(zhì),數(shù)列求和,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知關(guān)于x的一元二次方程:9x2+6mx=n2-4(m,n∈R).
(1)若m∈{x|0≤x≤3,x∈N*},n∈{x|0≤x≤2,x∈Z},求方程有兩個(gè)不相等實(shí)根的概率;
(2)若m∈{x|0≤x≤3,x∈R},n∈{x|0≤x≤2,x∈R},求方程有實(shí)數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列各對雙曲線中,既有相同的離心率又有相同的漸近線的是(  )
A.$\frac{x^2}{3}-{y^2}=1$和  $\frac{y^2}{9}-\frac{x^2}{3}=1$B.$\frac{x^2}{3}-{y^2}=1$和  ${y^2}-\frac{x^2}{3}=1$
C.${y^2}-\frac{x^2}{3}=1$和  ${x^2}-\frac{y^2}{3}=1$D.$\frac{x^2}{3}-{y^2}=1$和$\frac{y^2}{3}-\frac{x^2}{9}=-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓C:x2+y2-2x-4y+m=0.
(I)求m的取值范圍;
(II)當(dāng)m=-11時(shí),若圓C與直線x+ay-4=0交于M,N兩點(diǎn),且∠MCN=120°,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若命題p:?x∈R,x2+1<0,則¬p:(  )
A.?x0∈R,x02+1>0B.?x0∈R,x02+1≥0C.?x∈R,x2+1>0D.?x∈R,x2+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在等差數(shù)列{an}中,若a2+a8=8,則數(shù)列{an}的前9項(xiàng)和S9=36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=x+xlnx,g(x)=x-lnx-2,
(1)若x0是g(x)在(1,+∞)的一個(gè)零點(diǎn),且x0∈(n,n+1),n∈Z,求n;
(2)若k∈Z,k<$\frac{f(x)}{x-1}$對任意x>1恒成立,求k的最大值;
(3)設(shè)F(x)=2g(x)+x2+(-a-2)x+4,其導(dǎo)函數(shù)為F′(x),若F(x)的圖象交x軸于點(diǎn)C(x1,0),D(x2,0)兩點(diǎn),且線段CD的中點(diǎn)為N(s,0),試問s是否為F′(x)=0的根?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,是奇函數(shù),又在定義域內(nèi)為減函數(shù)的是( 。
A.y=$\frac{2}{x}$B.y=3-sinxC.y=-tanxD.y=-2x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)設(shè)p:實(shí)數(shù)x滿足(x-3a)(x-a)<0,其中a>0,q:實(shí)數(shù)x滿足$\left\{\begin{array}{l}{x^2}-3x≤0\\{x^2}-x-2>0\end{array}\right.$,若p是?q的充分不必要條件,求實(shí)數(shù)a的取值范圍;
(2)設(shè)命題p:“函數(shù)$f(x)=\frac{x^3}{3}+\frac{{m{x^2}}}{2}+x+3$無極值”;命題q:“方程$\frac{x^2}{m}+{y^2}=1$表示焦點(diǎn)在y軸上的橢圓”,若p或q為真命題,p且q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案