分析 (1)分別求出關于p,q的不等式,得到關于a的不等式,解出即可;
(2)分別求出p,q為真時的m的范圍,得到關于m的不等式組,解出即可.
解答 解:(1)p:a<x<3a,q:2<x≤3,
故¬q:x>3或x≤2
∵p是¬q的充分不必要條件,
∴3a≤2或a≥3,
解得:0<a≤$\frac{2}{3}$或a≥3,
即實數a的取值范圍是(0,$\frac{2}{3}$]∪[3,+∞).
(2)p:f′(x)=x2+mx+1,函數無極值,
得到△=m2-4≤0,解得:-2≤m≤2,
q:0<m<1,
若p或q為真命題,p且q為假命題,
則p,q一真一假,
故$\left\{\begin{array}{l}{-2≤m≤2}\\{m≥1或m≤0}\end{array}\right.$或$\left\{\begin{array}{l}{0<m<1}\\{m>2或m<-2}\end{array}\right.$,
解得:-2≤m≤0或1≤m≤2,
故答案為:[-2,0]∪[1,2].
點評 本題主要考查充分條件和必要條件的應用,利用復合命題之間的關系是解決本題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | x-3y+8=0 | B. | 3x+y+4=0 | C. | x+3y-4=0 | D. | 3x-y+8=0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|0<x<2} | B. | {x|0≤x<2} | C. | {x|-1<x<0} | D. | {x|-1<x≤0} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{x^2}{80}-\frac{y^2}{20}=1$ | B. | $\frac{x^2}{20}-\frac{y^2}{80}=1$ | C. | $\frac{x^2}{20}-\frac{y^2}{5}=1$ | D. | $\frac{x^2}{5}-\frac{y^2}{20}=1$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com