已知函數(shù),且處的切線方程為.
(1)求的解析式;
(2)證明:當(dāng)時(shí),恒有;
(3)證明:若,,且,則.

(1).(2)詳見解析.

解析試題分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義求方程;(2)構(gòu)造新函數(shù)用導(dǎo)數(shù)法求解;
試題解析:(1)∵,∴切線斜率,
處的切線方程為,
.          (4分)
(2)令,

∴當(dāng)時(shí),,時(shí),,∴,
,即.           (8分)
(3)先求處的切線方程,由(1)得,
處的切線方程為,
, (10分)
下面證明,
,

,
時(shí),,時(shí),,∴
,      (12分)
,∴,
,
.        (14分)
考點(diǎn):導(dǎo)數(shù)法求函數(shù)的單調(diào)性,導(dǎo)數(shù)的幾何意義,不等式的證明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間[0,2]上恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)().
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;   
(Ⅱ)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的導(dǎo)函數(shù)是,處取得極值,且.
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對(duì)任意的總有成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點(diǎn).當(dāng)時(shí),求直線OM斜率的最小值,據(jù)此判斷的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若x=1時(shí)取得極值,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),求上的最小值;
(3)若對(duì)任意,直線都不是曲線的切線,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖像都過點(diǎn),且它們在點(diǎn)處有公共切線.
(1)求函數(shù)的表達(dá)式及在點(diǎn)處的公切線方程;
(2)設(shè),其中,求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<)圖像上一個(gè)最高點(diǎn)坐標(biāo)為(2,2),這個(gè)最高點(diǎn)到相鄰最低點(diǎn)的圖像與x軸交于點(diǎn)(5,0).

(1)求f(x)的解析式;
(2)是否存在正整數(shù)m,使得將函數(shù)f(x)的圖像向右平移m個(gè)單位后得到一個(gè)偶函數(shù)的圖像?若存在,求m的最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求曲線在點(diǎn)處的切線方程;
(2)直線為曲線的切線,且經(jīng)過原點(diǎn),求直線的方程及切點(diǎn)坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案