【題目】數(shù)列中的項(xiàng)按順序可以排列成如圖的形式,第一行項(xiàng),排;第二行項(xiàng),從左到右分別排,;第三行項(xiàng),……以此類推,設(shè)數(shù)列的前項(xiàng)和為,則滿足的最小正整數(shù)的值為( )

4,

4,43

4,43,4

4,43,4 , 4

A. B.

C. D.

【答案】C

【解析】

首先根據(jù)題中所給的圖中的數(shù)據(jù),可以斷定每行都是以4為首項(xiàng),以3為公比的等比數(shù)列,利用求和公式求得每一行的各項(xiàng)的和,之后對(duì)各行求和,利用等比數(shù)列求和公式得到相應(yīng)的不等式,求得結(jié)果.

由圖可知,第n行是4為首項(xiàng),以3為公比的等比數(shù)列的前n項(xiàng),

和為,

設(shè)滿足的最小正整數(shù)為

項(xiàng)在圖中排在第行第列(),

所以有

,則,

即圖中從第行第列開始,和大于.

因?yàn)榍?/span>行共有項(xiàng),

所以最小正整數(shù)的值為,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,為坐標(biāo)原點(diǎn),為橢圓的左焦點(diǎn),離心率為,直線與橢圓相交于兩點(diǎn).

(1)求橢圓的方程;

(2)若是弦的中點(diǎn),是橢圓上一點(diǎn),求的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為,作平面與底面不平行與棱,,,分別交于E,F,G,H,記EA,FBGC,HD分別為,,若,,則多面體EFGHABCD的體積為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程及曲線的直角坐標(biāo)方程,并指出兩曲線的軌跡圖形;

(2)曲線與兩坐標(biāo)軸的交點(diǎn)分別為,點(diǎn)在曲線上運(yùn)動(dòng),當(dāng)曲線與曲線相切時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列中的項(xiàng)按順序可以排列成如圖的形式,第一行項(xiàng),排;第二行項(xiàng),從左到右分別排,;第三行項(xiàng),……以此類推,設(shè)數(shù)列的前項(xiàng)和為,則滿足的最小正整數(shù)的值為( )

4,

4,43

4,43,4

4,43,4 , 4

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長(zhǎng)為2的正方體中, , , 分別是棱, , , 的中點(diǎn),點(diǎn), 分別在棱 上移動(dòng),且.

(1)當(dāng)時(shí),證明:直線平面;

(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在其定義域上恰有兩個(gè)零點(diǎn),則正實(shí)數(shù)a的值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某公園內(nèi)有兩條道路,,現(xiàn)計(jì)劃在上選擇一點(diǎn),新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知,

(1)若綠化區(qū)域的面積為1,求道路的長(zhǎng)度;

(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設(shè)),當(dāng)為何值時(shí),該計(jì)劃所需總費(fèi)用最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓的左、右焦點(diǎn)分別為,.過焦點(diǎn)且垂直于軸的直線與橢圓相交所得的弦長(zhǎng)為3,直線與橢圓相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是否存在直線與橢圓相交于兩點(diǎn),使得?若存在,求的取值范圍;若不存在,請(qǐng)說明理由!

查看答案和解析>>

同步練習(xí)冊(cè)答案