17.設(shè)a∈Z,且0≤a<13,若512016+a能被13整除,則a=12.

分析 由于512016+a=(52-1)2016+a,按二項式定理展開,根據(jù)題意可得${C}_{2016}^{2016}$•(-1)2016+a 能被13整除,再由0≤a<13,確定出a的值.

解答 解:512016+a=(52-1)2016+a
=${C}_{2016}^{0}$•522016+${C}_{2016}^{1}$•522015•(-1)1+${C}_{2016}^{2}$•522014•(-1)2+…+${C}_{2016}^{2016}$•(-1)2016+a,
除最后兩項外,其余各項都有13的倍數(shù)52,
故由題意可得${C}_{2016}^{2016}$•(-1)2016+a能被13整除,
∵0≤a<13,
∴a=12,
故答案為:12

點評 此題考查了二項式定理的應用,二項式展開式的通項公式,熟練掌握二項式定理是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.在銳角△ABC中,角A、B、C所對的邊分別為a、b、c,且2sin2$\frac{A+C}{2}$+cos2B=1.
(Ⅰ)求角B的大;
(Ⅱ)若b=2,求y=a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=ln(ax+b)(a>0且a≠1)是R上的奇函數(shù),則不等式f(x)>alna的解集是( 。
A.(a,+∞)
B.(-∞,a)
C.當a>1時,解集是(a,+∞);當0<a<1時,解集是(-∞,a)
D.當a>1時,解集是(-∞,a);當0<a<1時,解集是(a,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.某次測驗有3個選擇題,每個題有A,B,C,D共4個選項,某考生對每個題都有隨機選一個選項作為答案,則他第一題不選A和C,且3個題的選項互不相同的概率為$\frac{3}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.用循環(huán)語句描述計算1+22+32+…+n2>100的最小自然數(shù)n的值的一個算法,畫出算法程序框圖,并寫出相應的程序.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)y=Asin(ωx+φ)的圖象相鄰的最高點和最低點的坐標分別為($\frac{5π}{12}$,3),($\frac{11π}{12}$,-3),函數(shù)的解析式是f(x)=3sin(2x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設(shè)sin2α=-$\sqrt{3}$cosα,α∈(-$\frac{π}{2}$,0),則tan2α的值是( 。
A.$\sqrt{3}$B.$-\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,已知圓內(nèi)接四邊形ABCD滿足AC=BD,過C點的圓的切線與BA的延長線交于E點.
(1)求證:∠ACE=∠BCD;
(2)若BE=9,CD=1,求BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.某醫(yī)院為了提高服務(wù)質(zhì)量,對掛號處的排隊人數(shù)進行了調(diào)查,發(fā)現(xiàn):當還未開始掛號時,有N個人已經(jīng)在排隊等候掛號;開始掛號后排隊的人數(shù)平均每分鐘增加M人.假定掛號的速度是每個窗口每分鐘K個人,當開放一個窗口時,40分鐘后恰好不會出現(xiàn)排隊現(xiàn)象;若同時開放兩個窗口時,則15分鐘后恰好不會出現(xiàn)排隊現(xiàn)象.根據(jù)以上信息,若要求8分鐘后不出現(xiàn)排隊現(xiàn)象,則需要同時開放的窗口至少應有4個.

查看答案和解析>>

同步練習冊答案