分析 由于512016+a=(52-1)2016+a,按二項式定理展開,根據(jù)題意可得${C}_{2016}^{2016}$•(-1)2016+a 能被13整除,再由0≤a<13,確定出a的值.
解答 解:512016+a=(52-1)2016+a
=${C}_{2016}^{0}$•522016+${C}_{2016}^{1}$•522015•(-1)1+${C}_{2016}^{2}$•522014•(-1)2+…+${C}_{2016}^{2016}$•(-1)2016+a,
除最后兩項外,其余各項都有13的倍數(shù)52,
故由題意可得${C}_{2016}^{2016}$•(-1)2016+a能被13整除,
∵0≤a<13,
∴a=12,
故答案為:12
點評 此題考查了二項式定理的應用,二項式展開式的通項公式,熟練掌握二項式定理是解本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (a,+∞) | |
B. | (-∞,a) | |
C. | 當a>1時,解集是(a,+∞);當0<a<1時,解集是(-∞,a) | |
D. | 當a>1時,解集是(-∞,a);當0<a<1時,解集是(a,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $-\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $-\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com