11.f(x)=-x2+a(2-a)+b,
(1)若f(x)>0的解集為(-1,2),求a,b;
(2)對任意的實數(shù)a,f(1)>0恒成立,求b取值范圍.

分析 (1)由題意可知x2-a(2-a)x-b<0的解集為(-1,2),則-1,2是方程x2-a(2-a)x-b的兩根,根據(jù)根與系數(shù)的關系即可求得a,b的值.
(2)由f(1)>0,可得b>a2-2a-1=(a-1)2-2≥-2,即可求得b的取值范圍.

解答 解:(1)由題可知x2-a(2-a)x-b<0的解集為(-1,2),
則-1,2是方程x2-a(2-a)x-b的兩根,由韋達定理可知化為-1+2=a(2-a),-1×3=-b,
解得a=1,b=3,
(2)∵f(1)=1+a(2-a)+b>0,
∴b>a2-2a-1=(a-1)2-2≥-2,
∴b>-2,

點評 掌握一元二次不等式的解集與相應的一元二次方程的根的關系是正確求得一元二次不等式的解集的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知A=B=R,x∈A,y∈B,f:x→y=ax+b是從A到B的映射,若3→1和10→8,則5在f下對應的是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列函數(shù)是奇函數(shù)的是( 。
A.y=xsin2xB.y=xcos2xC.y=x+cosxD.y=x-cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.等比數(shù)列{an}的前n項和為Sn,若a1=1,且公比為2,則S4=15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)y=logax在x∈[2,+∞)上恒有|y|>1,則a的范圍是(  )
A.$\frac{1}{2}$<a<2且a≠1B.0<a<$\frac{1}{2}$或1<a<2C.1<a<2D.a>2或0<a<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.半徑為6的圓與x軸相切,且與圓x2+y2-6y+8=0內切,則此圓的方程是(  )
A.(x-4)2+(y-6)2=6B.(x±4)2+(y-6)2=6C.(x-4)2+(y-6)2=36D.(x±4)2+(y-6)2=36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設函數(shù)f(x)=$\overrightarrow{m}•\overrightarrow{n}$,其中$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期與單調減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(A)=2.
①求A;
②若b=1,△ABC的面積為$\frac{\sqrt{3}}{2}$,求$\frac{b+c}{sinB+sinC}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知正項數(shù)列{an}的前n項和為Sn,且an=2$\sqrt{{S}_{n}}$-1.
(1)求數(shù)列{$\sqrt{{S}_{n}}$}的通項公式;
(2)設bn=$\frac{{a}_{n}+2}{{2}^{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列有關命題的說法中,正確的是( 。
A.?x0∈R,使得${3^{x_0}}≤0$
B.?x∈R+,lgx>0
C.“$x=\frac{π}{6}$”是“$cosx=\frac{{\sqrt{3}}}{2}$”的必要不充分條件
D.“x=1”是“x≥1”的充分不必要條件

查看答案和解析>>

同步練習冊答案