2.已知定義在R上的函數(shù)f(x)=$\frac{ax}{{{x^2}+1}}$+1,a∈R以下說法正確的是( 。
①函數(shù)f(x)的圖象是中心對稱圖形
②函數(shù)f(x)有兩個(gè)極值
③函數(shù)f(x)零點(diǎn)個(gè)數(shù)最多為三個(gè)
④當(dāng)a>0時(shí),若1<m<n,則f(m)+f(n)>2f($\frac{m+n}{2}$)
A.①③B.②④C.①④D.②③

分析 根據(jù)y=f(x)-1的奇偶性判斷①;令f′(x)=0,根據(jù)解的個(gè)數(shù)判斷②;根據(jù)方程f(x)=0的解得個(gè)數(shù)判斷③;利用f(x)在(1,+∞)上的單調(diào)性和極限判斷④.

解答 解:對于①,令g(x)=f(x)-1=$\frac{ax}{{x}^{2}+1}$,則g(x)是奇函數(shù),
∴g(x)的圖象關(guān)于點(diǎn)(0,0)對稱,
∴f(x)的圖象關(guān)于(0,1)對稱,故①正確;
對于②,當(dāng)a=0時(shí),f(x)=1,顯然f(x)無極值,故②錯(cuò)誤;
對于③,令f(x)=0得$\frac{ax}{{x}^{2}+1}+1=0$,∴x2+ax+1=0,
顯然方程不可能3解,即f(x)不可能有3個(gè)零點(diǎn),故③錯(cuò)誤;
對于④,當(dāng)x>1,a>0時(shí),f′(x)=$\frac{a-a{x}^{2}}{({x}^{2}+1)^{2}}$<0,
∴f(x)在(1,+∞)上單調(diào)遞減,又x→+∞時(shí),f(x)=$\frac{a}{x+\frac{1}{x}}+1$→1,
作出f(x)在(1,+∞)上的大致函數(shù)圖象如圖,

由圖象可知$\frac{f(m)+f(n)}{2}$>f($\frac{m+n}{2}$),即f(m)+f(n)>2f($\frac{m+n}{2}$).故④正確.
故選C.

點(diǎn)評 本題考查了函數(shù)單調(diào)性、奇偶性的判斷,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)y=asinx+2b(a>0)的最大值為4,最小值為0,則a+b=3;此時(shí)函數(shù)y=bsinax的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知命題p:指數(shù)函數(shù)f(x)=(2a-6)x在R上單調(diào)遞減,命題q:關(guān)于x的方程x2-3ax+2a2+1=0的兩個(gè)實(shí)根均大于3,若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某公司在新年晚會上舉行抽獎(jiǎng)活動(dòng),有甲,乙兩個(gè)抽獎(jiǎng)方案供員工選擇.
方案甲:員工最多有兩次抽獎(jiǎng)機(jī)會,每次抽獎(jiǎng)的中獎(jiǎng)率均為$\frac{4}{5}$,第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束,若中獎(jiǎng),則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng),規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),則獲得1000元;若未中獎(jiǎng),則不能獲得獎(jiǎng)金.
方案乙:員工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為$\frac{2}{5}$,每次中獎(jiǎng)均可獲得獎(jiǎng)金400元.
(Ⅰ)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獲獎(jiǎng)金X(元)的分布列;
(Ⅱ)試比較某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),哪個(gè)方案更劃算?
(Ⅲ)已知公司共有100人在活動(dòng)中選擇了方案甲,試估計(jì)這些員工活動(dòng)結(jié)束后沒有獲獎(jiǎng)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若直線y=kx+3與圓(x-1)2+(y-2)2=4相加于M,N兩點(diǎn),且$|MN|≥2\sqrt{3}$,則k的取值范圍是( 。
A.(-∞,-1]B.(-∞,0]C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若將函數(shù)y=sin(2x+φ)(0<φ<π)圖象向右平移$\frac{π}{8}$個(gè)單位長度后關(guān)于y軸對稱,則φ的值為(  )
A.$\frac{π}{4}$B.$\frac{3π}{8}$C.$\frac{3π}{4}$D.$\frac{5π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)a>1,若僅有一個(gè)常數(shù)c使得對于任意的x∈[a,3a]都有y∈[a,a3]滿足方程logax+logay=c,則a的取值組成的集合為{3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果一個(gè)函數(shù)f(x)滿足:(1)定義域?yàn)镽;(2)任意x1,x2∈R,若x1+x2=0,則f(x1)+f(x2)=0;(3)任意x∈R,若t>0,總有f(x+t)>f(x),則f(x)可以是( 。
A.y=-xB.y=3xC.y=x3D.y=log3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ex-ax-1,其中a為實(shí)數(shù).
(1)若a=1,求函數(shù)f(x)的最小值;
(2)若方程f(x)=0在(0,2]上有實(shí)數(shù)解,求a的取值范圍;
(3)設(shè)ak,bk(k=1,2…,n)均為正數(shù),且a1b1+a2b2+…+anbn≤b1+b2+…+bn,求證:a1${\;}^{_{1}}$a2${\;}^{_{2}}$…an${\;}^{_{n}}$≤1.

查看答案和解析>>

同步練習(xí)冊答案