12.已知函數(shù)y=asinx+2b(a>0)的最大值為4,最小值為0,則a+b=3;此時(shí)函數(shù)y=bsinax的最小正周期為π.

分析 根據(jù)正弦函數(shù)的性質(zhì)求解即可.

解答 解:由題意,函數(shù)y=asinx+2b(a>0)的最大值為4,最小值為0,
可得a+2b=4,2b-a=0,解得:a=2,b=1.
則a+b=3.
函數(shù)y=bsinax的最小正周期T=$\frac{2π}{a}=\frac{2π}{2}=π$.
故答案為:3,π

點(diǎn)評(píng) 本題主要考查了正弦函數(shù)的圖象及性質(zhì)以及周期的求法.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬(wàn)元)有如表的統(tǒng)計(jì)資料:
使用年限x(年)23456
維修費(fèi)用y(萬(wàn)元)2.23.85.56.57.0
若由資料可知y對(duì)x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸方程;
(2)根據(jù)回歸直線方程,估計(jì)使用年限為12年時(shí),維修費(fèi)用是多少?
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.點(diǎn)P在曲線y=x3-x+7上移動(dòng),過(guò)點(diǎn)P的切線傾斜角的取值范圍是( 。
A.[0,π]B.$[0,\frac{π}{2})∪[\frac{3π}{4},π)$C.$[0,\frac{π}{2})∪[\frac{π}{2},π)$D.$[0,\frac{π}{2}]∪[\frac{3π}{4},π)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知α∈[$\frac{π}{2}$,$\frac{3π}{2}$],β∈[-$\frac{π}{2}$,0],且(α-$\frac{π}{2}$)3-sinα-2=0,8β3+2cos2β+1=0,則sin($\frac{α}{2}$+β)的值為( 。
A.0B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),$\overrightarrow{BC}=(\frac{{\sqrt{3}}}{2},\frac{1}{2})$則∠ABC=arccos$\frac{3+\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,$\overrightarrow{m}$=(b,cosB),$\overrightarrow{n}$=(2a-c,cosC)且$\overrightarrow{m}$∥$\overrightarrow{n}$,求
(1)角B的大。
(2)sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=-x2+2lnx的極大值是函數(shù)g(x)=x+$\frac{a}{x}$的極小值的-$\frac{1}{2}$倍,并且$?{x_1},{x_2}∈[\frac{1}{e},3]$,不等式$\frac{{f({x_1})-g({x_2})}}{k-1}$≤1恒成立,則實(shí)數(shù)k的取值范圍是( 。
A.$(-∞,-\frac{40}{3}+2ln3]∪(-1,1)∪(1,+∞)$B.$(-∞,-\frac{34}{3}+2ln3]∪(1,+∞)$
C.$(-∞,-\frac{34}{3}+2ln3]∪[-1,1)∪(1,+∞)$D.$(-∞,-\frac{40}{3}+2ln3]∪(1,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=ax+elnx與g(x)=$\frac{{x}^{2}}{x-elnx}$的圖象有三個(gè)不同的公共點(diǎn),其中e為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.a<-eB.a>1C.a>eD.a<-3或a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知定義在R上的函數(shù)f(x)=$\frac{ax}{{{x^2}+1}}$+1,a∈R以下說(shuō)法正確的是( 。
①函數(shù)f(x)的圖象是中心對(duì)稱圖形
②函數(shù)f(x)有兩個(gè)極值
③函數(shù)f(x)零點(diǎn)個(gè)數(shù)最多為三個(gè)
④當(dāng)a>0時(shí),若1<m<n,則f(m)+f(n)>2f($\frac{m+n}{2}$)
A.①③B.②④C.①④D.②③

查看答案和解析>>

同步練習(xí)冊(cè)答案