A. | 10 | B. | $\sqrt{41}$ | C. | 6 | D. | $\sqrt{61}$ |
分析 將三棱柱展開,不難發(fā)現(xiàn)最短距離是3個(gè)矩形對(duì)角線的連線,正好相當(dāng)于繞三棱柱轉(zhuǎn)1次的最短路徑.
解答 解:將正三棱柱ABC-A1B1C1沿側(cè)棱展開,在展開圖中,最短距離是3個(gè)矩形對(duì)角線的連線的長(zhǎng)度,也即為三棱柱的側(cè)面上所求距離的最小值.
由已知求得矩形的長(zhǎng)等于3×2=6,寬等于5,由勾股定理d=$\sqrt{36+25}$=$\sqrt{61}$
故選:D.
點(diǎn)評(píng) 本題考查棱柱的結(jié)構(gòu)特征,空間想象能力,幾何體的展開與折疊,體現(xiàn)了轉(zhuǎn)化(空間問題轉(zhuǎn)化為平面問題,化曲為直)的思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1(x>2) | B. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1(x<-2) | ||
C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>2) | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com