6.如圖,已知四棱錐S-ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD=2,E是邊SB的中點.
(1)求證:CE∥平面SAD;
(2)求二面角D-EC-B的余弦值大。

分析 (1)取SA中點F,連結(jié)EF,F(xiàn)D,推導(dǎo)出四邊形EFDC是平行四邊形,由此能證明CE∥面SAD.
(2)在底面內(nèi)過點A作直線AM∥BC,則AB⊥AM,以AB,AM,AS所在直線分別為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角D-EC-B的余弦值.

解答 證明:(1)取SA中點F,連結(jié)EF,F(xiàn)D,
∵E是邊SB的中點,
∴EF∥AB,且EF=$\frac{1}{2}$AB,
又∵∠ABC=∠BCD=90°,
∴AB∥CD,
又∵AB=2CD,且EF=CD,
∴四邊形EFDC是平行四邊形,
∴FD∥EC,
又FD?平面SAD,CE?平面SAD,
∴CE∥面SAD.
解:(2)在底面內(nèi)過點A作直線AM∥BC,則AB⊥AM,
又SA⊥平面ABCD,
以AB,AM,AS所在直線分別為x,y,z軸,建立空間直角坐標系,
則A(0,0,0),B(2,0,0),C(2,2,0),D(1,2,0),D(1,2,0),E(1,0,1),
則$\overrightarrow{BC}$=(0,2,0),$\overrightarrow{BE}$=(-1,0,1),$\overrightarrow{CD}$=(-1,0,),$\overrightarrow{CE}$=(-1,-2,1),
設(shè)面BCE的一個法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BC}=2y=0}\\{\overrightarrow{n}•\overrightarrow{BE}=-x+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,1),
同理求得面DEC的一個法向量為$\overrightarrow{m}$=(0,1,2),
cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{\sqrt{10}}{5}$,
由圖可知二面角D-EC-B是鈍二面角,
∴二面角D-EC-B的余弦值為-$\frac{\sqrt{10}}{5}$.

點評 本題考查線面平行的證明,考查二面角的余弦值求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=lgx,0<a<b,若p=f($\sqrt{ab}$),q=f($\frac{a+b}{2}$),r=$\frac{1}{2}$[f(a)+f(b)],則p,q,r的大小關(guān)系是( 。
A.p=r>qB.p=r<qC.q=r<pD.q-r>p

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)$y={log_a}({2{x^2}-3x+1})$,當x=3時,y<0則該函數(shù)的單調(diào)遞減區(qū)間是( 。
A.$({-∞,\frac{3}{4}})$B.$({\frac{3}{4},+∞})$C.$({-∞,\frac{1}{2}})$D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某青年教師有一專項課題是進行“學生數(shù)學成績與物理成績的關(guān)系”的研究,他調(diào)查了某中學高二年級800名學生上學期期末考試的數(shù)學和物理成績,把成績按優(yōu)秀和不優(yōu)秀分類得到的結(jié)果是:數(shù)學和物理都優(yōu)秀的有60人,數(shù)學成績優(yōu)秀但物理不優(yōu)秀的有140人,物理成績優(yōu)秀但數(shù)學不優(yōu)秀的有60人.
(1)能否在犯錯概率不超過0.001的前提下認為該中學學生的數(shù)學成績與物理成績有關(guān)?
(2)將上述調(diào)查所得到的頻率視為概率,從全體高二年級學生成績中,有放回地隨機抽取4名學生的成績,記抽取的4份成績中數(shù)學、物理兩科成績恰有一科優(yōu)秀的份數(shù)為X,求X的分布列和期望E(X).
附:
P(K2≥k00.1000.0500.010
k06.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.直線$x-\sqrt{3}y-2=0$的傾斜角為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列判斷錯誤的是( 。
A.命題“若am2≤bm2,則a≤b”是假命題
B.直線y=$\frac{1}{2}$x+b不能作為函數(shù)f(x)=$\frac{1}{{e}^{x}}$圖象的切線
C.“若a=1,則直線x+y=0和直線x-ay=0互相垂直”的逆否命題為真命題
D.“f′(x0)=0”是“函數(shù)f(x)在x0處取得極值”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某校擬從高一年級、高二年級、高三年級學生中抽取一定比例的學生調(diào)查對“荊馬”(荊門國際馬拉松)的了解情況,則最合理的抽樣方法是( 。
A.抽簽法B.系統(tǒng)抽樣法C.分層抽樣法D.隨機數(shù)法

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知直線ax+y-1=0與圓x2+y2-2x-8y+13=0交于A,B兩點.若|AB|=2$\sqrt{3}$,則實數(shù)a的值是( 。
A.-$\frac{4}{3}$B.-$\frac{3}{4}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在直角坐標平面內(nèi),點A,B的坐標分別為(-1,0),(1,0),則滿足tan∠PAB•tan∠PBA=m(m為非零常數(shù))的點P的軌跡方程是(  )
A.${x^2}-\frac{y^2}{m}=1(y≠0)$B.${x^2}-\frac{y^2}{m}=1$C.${x^2}+\frac{y^2}{m}=1(y≠0)$D.${x^2}+\frac{y^2}{m}=1$

查看答案和解析>>

同步練習冊答案