14.函數(shù)f(x)=$\frac{1}{4}$sinxcosx是( 。
A.最小正周期為2π的偶函數(shù)B.最小正周期為2π的奇函數(shù)
C.最小正周期為π的偶函數(shù)D.最小正周期為π的奇函數(shù)

分析 化簡(jiǎn)f(x),根據(jù)三角函數(shù)性質(zhì)和周期公式即可得到結(jié)論.

解答 解:函數(shù)f(x)=$\frac{1}{4}$sinxcosx=$\frac{1}{8}$sin2x.
根據(jù)正弦函數(shù)的性質(zhì)可得,f(x)是奇函數(shù),周期T=$\frac{2π}{2}=π$.
故選:D.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象和性質(zhì),比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c且b=acosC+$\frac{\sqrt{3}}{3}$csinA,
(1)求角A的值;
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(sin(ωx+φ),2),$\overrightarrow$=(1,cos(ωx+φ)),(ω>0,0<φ<$\frac{π}{4}$),函數(shù)f(x)=($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)的圖象過(guò)點(diǎn)M(1,$\frac{7}{2}$),且相鄰兩對(duì)稱軸之間的距離為2.
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)求f(x)在[-$\frac{2}{3}$,2]上的最大值,并求出此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.給出下列命題:
①在回歸直線$\widehat{y}$=0.5x-85中,變量x=200時(shí),變量$\widehat{y}$的值一定是15;
②根據(jù)2×2列聯(lián)表中的數(shù)據(jù)計(jì)算得出X2=7.469,而P(X2>6.635)≈0.01,則有99%的把握認(rèn)為兩個(gè)事件有關(guān);
③x、y均為正數(shù),且x+y=1,則$\frac{1}{x}$+$\frac{9}{y}$的最小值為12;
④若向量$\overrightarrow{a}$=(x,y),向量$\overrightarrow$=(-y,x),(xy≠0),則$\overrightarrow{a}$⊥$\overrightarrow$.
其中正確的命題使②④(將正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖是某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分的莖葉圖,則甲、乙兩人這幾場(chǎng)比賽得分的中位數(shù)分別是18,23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.將編號(hào)為1,2,3,4的四張同樣材質(zhì)的卡片,隨機(jī)放入編碼分別為1,2,3,4的四個(gè)小盒中,每盒僅放一張卡片,若第k號(hào)卡片恰好落入第k號(hào)小盒中,則稱其為一個(gè)匹對(duì),用ξ表示匹對(duì)的個(gè)數(shù).
(1)求第2號(hào)卡片恰好落入第2號(hào)小盒內(nèi)的概率;
(2)求匹對(duì)數(shù)ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在數(shù)列{an}中,a1=1,an+1-an=2n+1,則數(shù)列的通項(xiàng)an=n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={x|(x-2)(x+6)<0},B={x|y=$\sqrt{1-x}$},則A∩B=( 。
A.(-6,1)B.(-6,1]C.(1,2)D.[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知向量$\overrightarrow a=({0,-2\sqrt{3}})$,$\overrightarrow b=({1,\sqrt{3}})$,則向量$\overrightarrow a$在$\overrightarrow b$方向上的投影為-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案