分析 先求出f($\frac{9}{2}$)=|$\frac{9}{2}-2$|-2=$\frac{1}{2}$,從而f{[f($\frac{9}{2}$)]}=f($\frac{1}{2}$),由此能求出結果.
解答 解:∵f(x)=$\left\{\begin{array}{l}{|x-2|-2,|x|≥1}\\{\frac{1}{1+{x}^{2}},|x|<1}\end{array}\right.$,
∴f($\frac{9}{2}$)=|$\frac{9}{2}-2$|-2=$\frac{1}{2}$,
f{[f($\frac{9}{2}$)]}=f($\frac{1}{2}$)=$\frac{1}{1+(\frac{1}{2})^{2}}$=$\frac{4}{5}$.
故答案為:$\frac{4}{5}$.
點評 本題考查函數值的求法,是基礎題,解題時要認真審題,注意函數性質的合理運用.
科目:高中數學 來源: 題型:選擇題
A. | ?x0∉∁RQ,x03∈Q | B. | ?x0∈∁RQ,x03∈Q | C. | ?x∉∁RQ,x3∈Q | D. | ?x∈∁RQ,x3∉Q |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [$\sqrt{7}$-1,$\sqrt{7}$+1] | B. | ($\sqrt{7}$-1,$\sqrt{7}$+1) | C. | [1,2] | D. | (1,2) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3}{10}$ | B. | $\frac{5}{18}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com