12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{m-{x}^{2},x≥0}\end{array}\right.$,給出下列兩個命題:命題p:?m∈(-∞,0),方程f(x)=0有實數(shù)解;命題q:當m=$\frac{1}{4}$時,f(f(-1))=0,則下列命題為真命題的是( 。
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

分析 根據(jù)已知中的分段函數(shù),分別判斷命題p,q的真假,進而根據(jù)復合命題真假判斷的真值表,可得答案.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{m-{x}^{2},x≥0}\end{array}\right.$,
當x<0時,f(x)=2x∈(0,1),不存在滿足f(x)=0的x值;
當x≥0時,f(x)=0時,m=x2∈[0,+∞),
故命題p為假命題.
當m=$\frac{1}{4}$時,f(f(-1))=f($\frac{1}{2}$)=0
∴命題q為真命題,
故命題p∧q,p∧(¬q),(¬p)∧(¬q)均為假命題,
(¬p)∧q為真命題,
故選B.

點評 本題以命題的真假判斷與應用為載體,考查了復合命題,分段函數(shù)的圖象和性質,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,焦距為2,離心率e為$\frac{1}{2}$.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點$P({\frac{1}{2},1})$作圓$O:{x^2}+{y^2}=\frac{1}{2}$的切線,切點分別為M、N,直線MN與x軸交于點F,過點F的直線l交橢圓C于A、B兩點,點F關于y軸的對稱點為G,求△ABG的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合M={(x,y)|y=f(x)},若對于任意實數(shù)對(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,則稱集合M是“垂直對點集”,給出下列四個集合:
①M={(x,y)|y=$\frac{1}{{x}^{2}}$};
②M={(x,y)|y=sinx+1};
③={(x,y)|y=2x-2};
④M={(x,y)|y=log2x}
其中是“垂直對點集”的序號是( 。
A.②③④B.①②④C.①③④D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知A,B,C是球O的球面上三點,若三棱錐O-ABC體積的最大值為1,則球O的體積為8π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=|x-2|+|x+1|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若f(x)≥(log2a)2-${log_{\sqrt{2}}}$a對任意實數(shù)x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在銳角△ABC中,角A,B,C的對邊分別為a,b,c,已知$\frac{sinBsinC}{sinA}$=$\frac{3\sqrt{7}}{2}$,b=4a,a+c=5,則△ABC的面積為$\frac{3\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點分別為F1,F(xiàn)2,上頂點為A,點$P({1,\frac{3}{2}})$在橢圓C上,過點A與AF2垂直的直線交x軸負半軸于點B,且$2\overrightarrow{{F_1}{F_2}}+\overrightarrow{{F_2}B}=\overrightarrow 0$.
(1)求橢圓C的方程;
(2)是否存在過點Q(4,0)的直線m與橢圓C相交于不同的兩點M,N,使得36|QP|2=35|QM|•|QN|?若存在,求出直線m的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{6}x+2,x>a}\\{{x}^{2}+3x+2,x≤a}\end{array}\right.$,函數(shù)g(x)=f(x)-ax,恰有三個不同的零點,則a的取值范圍是( 。
A.($\frac{1}{6}$,3-2$\sqrt{2}$)B.($\frac{1}{6}$,$\frac{3}{2}$)C.(-∞,3-2$\sqrt{2}$)D.(3-2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.命題甲:對任意x∈(a,b),有f′(x)>0;命題乙:f(x)在(a,b)內是單調遞增的,則甲是乙的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案