已知橢圓的離心率為,直線與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過(guò)點(diǎn),且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于,垂足為點(diǎn),線段的垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)設(shè)軸交于點(diǎn),不同的兩點(diǎn)上(也不重合),且滿(mǎn)足,求的取值范圍.

(1);(2);(3).

解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間的距離公式等基礎(chǔ)知識(shí),考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查運(yùn)算求解能力、綜合分析和解決問(wèn)題的能力.第一問(wèn),利用直線與圓相切列出距離公式,求出橢圓中的基本量,比較簡(jiǎn)單;第二問(wèn),考查拋物線的定義,本問(wèn)主要考查理解題意的能力;第三問(wèn),與向量相結(jié)合,再加上基本不等式求最值.
試題解析:(1)由直線與圓相切,得,即.
,得,所以,所以橢圓的方程是. (4分)
(2)由條件,知,即動(dòng)點(diǎn)到定點(diǎn)的距離等于它到直線的距離,由拋物線的定義得點(diǎn)的軌跡的方程是.(6分)
(3)由(2)知,設(shè),

,得,
,∴,
,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.
,
,∴當(dāng),即時(shí),.
的取值范圍是.(12分)
考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程;2.點(diǎn)到直線的距離公式;3.拋物線的定義;4.基本不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓拋物線的焦點(diǎn)均在軸上,的中心和 的頂點(diǎn)均為坐標(biāo)原點(diǎn)從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:











(Ⅰ)求分別適合的方程的點(diǎn)的坐標(biāo);
(Ⅱ)求的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知分別是橢圓的左、右焦點(diǎn),橢圓的離心率
(I)求橢圓的方程;(II)已知直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).求證:以線段為直徑的圓恒過(guò)定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

拋物線M: 的準(zhǔn)線過(guò)橢圓N: 的左焦點(diǎn),以坐標(biāo)原點(diǎn)為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點(diǎn)A與點(diǎn)B,直線AB與x軸相交于點(diǎn)C.

(1)求拋物線M的方程.
(2)設(shè)點(diǎn)A的橫坐標(biāo)為x1,點(diǎn)C的橫坐標(biāo)為x2,曲線M上點(diǎn)D的橫坐標(biāo)為x1+2,求直線CD的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)點(diǎn)A(,0),B(,0),直線AM、BM相交于點(diǎn)M,且它們的斜率之積為.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)若直線過(guò)點(diǎn)F(1,0)且繞F旋轉(zhuǎn),與圓相交于P、Q兩點(diǎn),與軌跡C相交于R、S兩點(diǎn),若|PQ|求△的面積的最大值和最小值(F′為軌跡C的左焦點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓方程為,過(guò)右焦點(diǎn)斜率為1的直線到原點(diǎn)的距離為.

(1)求橢圓方程.
(2)已知為橢圓的左右兩個(gè)頂點(diǎn),為橢圓在第一象限內(nèi)的一點(diǎn),為過(guò)點(diǎn)且垂直軸的直線,點(diǎn)為直線與直線的交點(diǎn),點(diǎn)為以為直徑的圓與直線的一個(gè)交點(diǎn),求證:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線交于兩點(diǎn).
(1)寫(xiě)出的方程;
(2) ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,過(guò)拋物線的對(duì)稱(chēng)軸上任一點(diǎn)作直線與拋物線交于兩點(diǎn),點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn).

(1)設(shè),證明:;
(2)設(shè)直線AB的方程是,過(guò)兩點(diǎn)的圓C與拋物線在點(diǎn)A處有共同的切線,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)訄AC經(jīng)過(guò)點(diǎn)(0,m) (m>0),且與直線y=-m相切,圓C被x軸截得弦長(zhǎng)的最小值為1,記該圓的圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)是否存在曲線C與曲線E的一個(gè)公共點(diǎn),使它們?cè)谠擖c(diǎn)處有相同的切線?若存在,求出切線方程;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案