20.若直線x-y=2被圓(x-a)2+y2=4所截得的弦長為2$\sqrt{2}$,則正數(shù)a=( 。
A.4或0B.4C.$\sqrt{3}$D.0

分析 由已知得圓心(a,0)到直線x-y=2的距離d=$\sqrt{4-2}$=$\sqrt{2}$,由此利用點(diǎn)到直線的距離公式能求出實(shí)數(shù)a的值.

解答 解:∵直線x-y=2被圓(x-a)2+y2=4所截得的弦長為2$\sqrt{2}$,
∴圓心(a,0)到直線x-y=2的距離d=$\sqrt{4-2}$=$\sqrt{2}$,
∴d=$\frac{|a-2|}{\sqrt{2}}$=$\sqrt{2}$,
解得a=0或a=4,
∵a>0,∴a=4,
故選B.

點(diǎn)評 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要注意圓的性質(zhì)和點(diǎn)到直線的距離公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個(gè)四棱錐的三視圖如圖所示,這個(gè)四棱錐的體積為(  )
A.6B.8C.12D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.手機(jī)完全充滿電量,在開機(jī)不使用的狀態(tài)下,電池靠自身消耗一直到出現(xiàn)低電量警告之間所能維持的時(shí)間稱為手機(jī)的待機(jī)時(shí)間.為了解A,B兩個(gè)不同型號(hào)手機(jī)的待機(jī)時(shí)間,現(xiàn)從某賣場庫存手機(jī)中隨機(jī)抽取A,B兩個(gè)型號(hào)的手機(jī)各5臺(tái),在相同條件下進(jìn)行測試,統(tǒng)計(jì)結(jié)果如下:
手機(jī)編號(hào)12345
A型待機(jī)時(shí)間(h)120125122124124
B型待機(jī)時(shí)間(h)118123127120a
已知 A,B兩個(gè)型號(hào)被測試手機(jī)待機(jī)時(shí)間的平均值相等.
(Ⅰ)求a的值;
(Ⅱ)判斷A,B兩個(gè)型號(hào)被測試手機(jī)待機(jī)時(shí)間方差的大小(結(jié)論不要求證明);
(Ⅲ)從被測試的手機(jī)中隨機(jī)抽取A,B型號(hào)手機(jī)各1臺(tái),求至少有1臺(tái)的待機(jī)時(shí)間超過122小時(shí)的概率.
(注:n個(gè)數(shù)據(jù)x1,x2,…,xn的方差s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$為數(shù)據(jù)x1,x2,…,xn的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx+ax,g(x)=ax2+2x,其中a為實(shí)數(shù),e為自然對數(shù)的底數(shù).
(1)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)y=f(x)的極大值為-2,求實(shí)數(shù)a的值;
(3)若a<0,且對任意的x∈[1,e],f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,網(wǎng)格紙上校正方形的邊長為1,粗線畫出的某幾何體的三視圖,其中俯視圖的右邊為一個(gè)半圓,則此幾何體的體積為(  )
A.16+4πB.16+2πC.48+4πD.48+2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=cosx+2sinx,則f′($\frac{π}{4}$)=( 。
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.命題“?x∈R,x2≤1”的否定是?x∈R,x2>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\sqrt{1-3x}$的定義域是(-∞,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$α,β∈(\frac{π}{2},π)$,且$cosα=-\frac{4}{5},sinβ=\frac{5}{13}$,
(1)求sin(α+β),與與cos(α-β)的值;
(2)求tan(2α-β)的值.

查看答案和解析>>

同步練習(xí)冊答案