15.設(shè)?ABCD的對(duì)角線交于點(diǎn)O,則$\overrightarrow{AO}+\overrightarrow{DO}+\overrightarrow{BA}$等于$\overrightarrow{0}$.

分析 利用平行四邊形的性質(zhì)、向量的三角形法則即可得出.

解答 解:$\overrightarrow{AO}+\overrightarrow{DO}+\overrightarrow{BA}$=$\overrightarrow{AB}$+$\overrightarrow{BA}$=$\overrightarrow{0}$.
故答案為:$\overrightarrow{0}$.

點(diǎn)評(píng) 本題考查了平行四邊形的性質(zhì)、向量的三角形法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(x)=ex-2ax-1.
(Ⅰ)討論函數(shù)f(x)的極值;
(Ⅱ)當(dāng)x≥0時(shí),ex≥ax2+x+1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.?dāng)?shù)列 {an}滿足 an+1=$\frac{1}{1-{a}_{n}}$,a1=2,則a2016的值是(  )
A.2B.-1C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在平面直角坐標(biāo)系xoy中,過點(diǎn)P(0,1)的直線l平分圓C:(x-2)2+y2=1的面積,則直線l的斜率k為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)cos(-80°)=m那么tan100° 等于(  )
A.$\frac{\sqrt{1-{m}^{2}}}{m}$B.-$\frac{\sqrt{1-{m}^{2}}}{m}$C.$\frac{m}{\sqrt{1-{m}^{2}}}$D.-$\frac{m}{\sqrt{1-{m}^{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ$<\frac{π}{2})$的圖象過點(diǎn)$P(\frac{π}{3},0)$,圖象上與點(diǎn)P最近的一個(gè)頂點(diǎn)是$Q(\frac{7π}{12},-1)$.
(I)求函數(shù)的解析式;并用“五點(diǎn)法”在給定的坐標(biāo)系內(nèi)作出函數(shù)f(x)一個(gè)周期的簡圖;
(II)求函數(shù)f(x)的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.($x+2)(1-\frac{2}{x})^{4}$$(1-\frac{2}{x})^{4}$展開式的常數(shù)項(xiàng)為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知二次函數(shù)y=f(x)的圖象過點(diǎn)(1,-1)(3,3)(-2,8),求f(x)的解析式;
(2)求函數(shù)f(x)=$\frac{2-x}{1+x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直角△ABC如圖所示,其中∠ABC=90°,D,E分別是AB,AC邊上的中點(diǎn).現(xiàn)沿折痕DEDE將△ADE翻折,使得A與平面ABC外一點(diǎn)P重合,得到如圖(2)所示的幾何體
(1)證明:平面PBD⊥平面BCED;
(2)記平面PDE與平面PBC的交線為l,探究:直線l與BC是否平行.若平行,請(qǐng)給出證明,若不平行,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案