已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若直線l:與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn)。求證: 直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
(Ⅰ)橢圓的標(biāo)準(zhǔn)方程為
(Ⅱ)直線l過定點(diǎn),定點(diǎn)坐標(biāo)為
解析試題分析:(Ⅰ)因?yàn)闄E圓C上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為.在橢圓中,可求,再根據(jù)橢圓的標(biāo)準(zhǔn)方程為求得.
(Ⅱ)聯(lián)立直線l與橢圓方程得的一元二次方程,因?yàn)橐訟B為直徑的圓過橢圓的右頂點(diǎn)D(2,0),所以,故,可得的關(guān)系式,再由點(diǎn)斜式的直線方程寫出直線l過定點(diǎn),注意檢驗(yàn).
試題解析:(Ⅰ)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為
由已知得:
(Ⅱ)設(shè),聯(lián)立
得,則
又,
因?yàn)橐訟B為直徑的圓過橢圓的右頂點(diǎn)D(2,0),
當(dāng),直線過定點(diǎn)(2,0),與已知矛盾;
當(dāng)
所以,直線l過定點(diǎn),定點(diǎn)坐標(biāo)為
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程;2、直線與橢圓的位置關(guān)系;3、韋達(dá)定理;4、直線的點(diǎn)斜式方程;5、點(diǎn)與圓的位置關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓錐曲線的兩個(gè)焦點(diǎn)坐標(biāo)是,且離心率為;
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)曲線表示曲線的軸左邊部分,若直線與曲線相交于兩點(diǎn),求的取值范圍;
(Ⅲ)在條件(Ⅱ)下,如果,且曲線上存在點(diǎn),使,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的焦點(diǎn)為,,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過的直線與橢圓交于、兩點(diǎn),問在橢圓上是否存在一點(diǎn),使四邊形為平行四邊形,若存在,求出直線的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,為坐標(biāo)原點(diǎn),動直線與
拋物線交于不同兩點(diǎn)
(1)求證:·為常數(shù);
(2)求滿足的點(diǎn)的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點(diǎn).
(1)求證:OA⊥OB;
(2)當(dāng)DAOB的面積等于時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為的橢圓過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)不過原點(diǎn)O的直線與該橢圓交于P,Q兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,
求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,點(diǎn)分別是橢圓C:的左、右焦點(diǎn),過點(diǎn)作軸的垂線,交橢圓的上半部分于點(diǎn),過點(diǎn)作的垂線交直線于點(diǎn).
(1)如果點(diǎn)的坐標(biāo)為(4,4),求橢圓的方程;
(2)試判斷直線與橢圓的公共點(diǎn)個(gè)數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左、右焦瞇分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P(1,)在橢圓C上.
(I)求橢圓C的方程;
(II)過F1的直線l與橢圓C相交于A,B兩點(diǎn),且的面積為,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com