4.設(shè)a,b是非零實(shí)數(shù),c∈R,若a<b,則下列不等式成立的是( 。
A.a2<b2B.$\frac{1}{a}>\frac{1}$C.ac<acD.a-c<b-c

分析 利用不等式的基本性質(zhì)即可得出

解答 解:若a=-2,b=1,則A不成立,
若a=-2,b-1,則B不成立,
若c=0,則C不成立,
根據(jù)不等式的性質(zhì)可得a-c<b-c成立,
故選:D

點(diǎn)評 本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.摩拜單車和ofo小黃車等各種共享自行車已經(jīng)遍布大街小巷,給我們的生活帶來了便利.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是:每車使用1小時之內(nèi)是免費(fèi)的,超過1小時的部分每小時收費(fèi)2元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨(dú)立來該租車點(diǎn)租車(各租一車一次).設(shè)甲、乙不超過兩小時還車的概率分別為$\frac{1}{4}$,$\frac{1}{2}$;1小時以上且不超過2小時還車的概率分別為$\frac{1}{2}$,$\frac{1}{4}$;兩人租車時間都不會超過3小時.
(Ⅰ)求甲乙兩人所付的租車費(fèi)用相同的概率;
(Ⅱ)設(shè)甲乙兩人所付租車費(fèi)用之和為隨機(jī)變量ξ,求ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.閱讀下列程序框圖,輸出的結(jié)果s的值為(  )
A.$\frac{{\sqrt{3}}}{2}$B.0C.$-\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)計算:sin$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan(-$\frac{25π}{4}$)
(2)化簡:$\frac{{sin(5π-α)cos(α+\frac{3}{2}π)cos(π+α)}}{{sin(α-\frac{3}{2}π)cos(α+\frac{π}{2})tan(α-3π)}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法正確的是( 。
A.三角形的內(nèi)角是第一象限角或第二象限角
B.第一象限的角是銳角
C.第二象限的角比第一象限的角大
D.角α是第四象限角,則$2kπ-\frac{π}{2}<α<2kπ(k∈z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.f(x)是R上的以3為周期的奇函數(shù),且f(2)=0,則f(x)=0在[0,6]內(nèi)解的個數(shù)為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若復(fù)數(shù)z滿足$\frac{z+2i}{z}$=2+3i,其中i是虛數(shù)單位,則$\overline z$=( 。
A.$\frac{2}{5}$+$\frac{3}{5}$iB.$\frac{3}{5}$+$\frac{2}{5}$iC.$\frac{3}{5}$+$\frac{1}{5}$iD.$\frac{3}{5}$-$\frac{1}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)x∈R,且x≠0,若x+x-1=3,猜想${x^{2^n}}+{x^{-{2^n}}}(n∈{N^*})$的個位數(shù)字是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點(diǎn)N(x,y)為圓x2+y2=1上任意一點(diǎn),則$\frac{y}{x+2}$的取值范圍( 。
A.[$-\frac{{\sqrt{3}}}{3}$,$\frac{{\sqrt{3}}}{3}$]B.[-$\sqrt{3}$,$\sqrt{3}$]C.(-∞,$-\frac{{\sqrt{3}}}{3}$]∪[$\frac{{\sqrt{3}}}{3}$,+∞)D.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案