19.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1,$\frac{{a}_{3}}{2}$,a2成等差數(shù)列,則$\frac{{a}_{2017}+{a}_{2016}}{{a}_{2015}+{a}_{2014}}$=( 。
A.2B.3C.4D.9

分析 先根據(jù)等差數(shù)列的中項(xiàng)性質(zhì)建立等式求得公比q,進(jìn)而代入原式求得答案.

解答 解:設(shè)公比為q(q>0)的等比數(shù)列{an}的各項(xiàng)均為正數(shù),
由2a1,$\frac{{a}_{3}}{2}$,a2成等差數(shù)列可知a3=2a1+a2,
∴a1q2=2a1+a1q,整理可得q2-q-2=0,
求得q=2或-1(舍去),
∴$\frac{{a}_{2017}+{a}_{2016}}{{a}_{2015}+{a}_{2014}}$=$\frac{{a}_{2014}{q}^{3}+{a}_{2014}{q}^{2}}{{a}_{2014}q+{a}_{2014}}$=$\frac{{q}^{3}+{q}^{2}}{q+1}$=q2=4,
故選:C.

點(diǎn)評(píng) 本題主要考查了等比數(shù)列的通項(xiàng)公式和等差數(shù)列中項(xiàng)性質(zhì)的運(yùn)用.等差中項(xiàng)是解決等差數(shù)列問題的常用性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≥1\\ mx-y≤0\\ 2x-y+2≥0\end{array}\right.$,若z=3x-y的最大值為1,則m的值為( 。
A.$\frac{8}{3}$B.2C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{{t}^{2}}{4}}\\{y=t}\end{array}\right.$,直線l的方程是x=ky+1(k∈R).
(Ⅰ)求曲線C的普通方程;
(Ⅱ)若直線l與曲線C相交所得的弦長(zhǎng)是4,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)(1+i)z=1-i(i是虛數(shù)單位),則z的共軛復(fù)數(shù)的虛部是( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(a+1)lnx-x2,$g(x)=\frac{{{x^2}+a}}{x}$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)與g(x)在(0,+∞)上的單調(diào)性正好相反.
(1)對(duì)于$?{x_1},{x_2}∈[\frac{1}{e},3]$,不等式$\frac{1}{{f({x_1})-g({x_2})}}≤\frac{1}{t-1}$恒成立,求實(shí)數(shù)t的取值范圍;
(2)令h(x)=xg(x)-f(x),兩正實(shí)數(shù)x1、x2滿足h(x1)+h(x2)+6x1x2=6,證明0<x1+x2≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a>0,b>0,則“l(fā)og2a>log2b”是“${({\frac{1}{3}})^a}<{({\frac{1}{3}})^b}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,若以(an,Sn)為坐標(biāo)的點(diǎn)在曲線y=$\frac{1}{2}$x(x+1)上,則數(shù)列{an}的通項(xiàng)公式為an=n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=ln(1+x)-ln(1-x),給出以下四個(gè)命題:
①?x∈(-1,1),有f(-x)=-f(x);
②?x1,x2∈(-1,1)且x1≠x2,有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$;
③?x1,x2∈(0,1),有$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{{f({x_1})+f({x_2})}}{2}$;
④?x∈(-1,1),|f(x)|≥2|x|.
其中所有真命題的序號(hào)是(  )
A.①②B.③④C.①②③D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知中心在原點(diǎn)的雙曲線,其右焦點(diǎn)與圓x2-4x+y2+1=0的圓心重合,且漸近線與該圓相離,則雙曲線離心率的取值范圍是( 。
A.(1,$\frac{2\sqrt{3}}{3}$)B.(1,2)C.($\frac{2\sqrt{3}}{3}$,+∞)D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案