精英家教網 > 高中數學 > 題目詳情
17.在平面直角坐標系xOy中,已知向量$\overrightarrow{m}$=(1,-1),$\overrightarrow{n}$=(sinx,cosx),x∈(0,$\frac{π}{2}$).
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求x的值;
(2)若$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{π}{3}$,求x的值.

分析 (1)利用兩個向量垂直的性質,求得tanx的值,可得x的值.
(2)由條件利用兩個向量數量積的運算公式、定義,求得sin(x-$\frac{π}{4}$)=$\frac{1}{2}$,從而求得x的值.

解答 解:(1)∵向量$\overrightarrow{m}$=(1,-1),$\overrightarrow{n}$=(sinx,cosx),x∈(0,$\frac{π}{2}$),
若$\overrightarrow{m}$⊥$\overrightarrow{n}$,則sinx-cosx=0,∴tan x=1,x=$\frac{π}{4}$.
(2)因為|$\overrightarrow{m}$|=$\sqrt{2}$,|$\overrightarrow{n}$|=1,所以$\overrightarrow{m}$•$\overrightarrow{n}$=$\sqrt{2}$•cos$\frac{π}{3}$=$\frac{\sqrt{2}}{2}$,
即sin x-cos x=$\frac{\sqrt{2}}{2}$,所以sin(x-$\frac{π}{4}$)=$\frac{1}{2}$,
∵0<x<$\frac{π}{2}$,∴x-$\frac{π}{4}$∈(-$\frac{π}{4}$,$\frac{π}{4}$),∴x-$\frac{π}{4}$=$\frac{π}{6}$,x=$\frac{5π}{12}$.

點評 本題主要考查兩個向量垂直的性質,兩個向量數量積的運算,根據三角函數的值求角,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

7.如圖是某幾何體的三視圖,則該幾何體的表面積為( 。
A.48B.57C.63D.68

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.已知α,β∈(0,$\frac{π}{2}$),且滿足sinα=$\frac{\sqrt{10}}{10}$,cosβ=$\frac{2\sqrt{5}}{5}$,則α+β的值為( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.設向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,1),若向量$\overrightarrow{a}$-λ$\overrightarrow$與向量$\overrightarrow{c}$=(5,-2)共線,則λ的值為( 。
A.$\frac{4}{3}$B.$\frac{4}{13}$C.-$\frac{4}{9}$D.4

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.函數f(x)=2sin(ωx-$\frac{π}{6}$)-1(ω>0)最小正周期是π,則函數f(x)的單調遞增區(qū)間是[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.下列函數中,對于任意的x∈R,滿足條件f(x)+f(-x)=0的函數是( 。
A.f(x)=x${\;}^{\frac{1}{3}}$B.f(x)=sinxC.f(x)=cosxD.f(x)=log2(x2+1)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.已知△ABC中,點A(-2,0),B(2,0),C(x,1)
(i)若∠ACB是直角,則x=$±\sqrt{3}$
(ii)若△ABC是銳角三角形,則x的取值范圍是(-2,-$\sqrt{3}$)∪(2,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.若tanθ=$\frac{4}{3}$,sinθ<0,則cosθ=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.$\frac{1}{{2}^{2}-1}$+$\frac{1}{{3}^{2}-1}$+$\frac{1}{{4}^{2}-1}$+…+$\frac{1}{(n+1)^{2}-1}$的值為( 。
A.$\frac{n+1}{2(n+2)}$B.$\frac{3}{4}$-$\frac{n+1}{2(n+2)}$C.$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$)D.$\frac{3}{2}$-$\frac{1}{n+1}$+$\frac{1}{n+2}$

查看答案和解析>>

同步練習冊答案