2.已知函數(shù)f(x)=$\frac{1}{3}$x3+x2+ax.若g(x)=$\frac{1}{{e}^{x}}$,對存在x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f′(x1)≤g(x2)成立,則實數(shù)a的取值范圍是( 。
A.(-∞,$\frac{\sqrt{e}}{e}$-$\frac{5}{4}$]B.(-∞,$\frac{\sqrt{e}}{e}$-8]C.(-∞,$\frac{1}{{e}^{2}}$-$\frac{5}{4}$]D.(-∞,$\frac{1}{{e}^{2}}$-8]

分析 利用恒成立通過函數(shù)的導數(shù)轉化求解函數(shù)的最值,推出不等式求解即可.

解答 解:對存在x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f′(x1)≤g(x2)成立,
∴[f′(x1)]min≤[g(x2)]max,f′(x)=(x+1)2+a-1,在[$\frac{1}{2}$,2]上單調遞增,
∴[f′(x1)]min=$f′(\frac{1}{2})$=$\frac{5}{4}+a$,g(x)在[$\frac{1}{2}$,2]上單調遞減,
則[g(x)]max=g($\frac{1}{2}$)=$\frac{\sqrt{e}}{e}$,∴$\frac{5}{4}+a≤\frac{\sqrt{e}}{e}$,則a≤$\frac{\sqrt{e}}{e}-\frac{5}{4}$,
故選:A.

點評 本題考查函數(shù)的單調性以及函數(shù)的導數(shù)的應用,考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=4$\sqrt{3}$sin(ωx+$\frac{π}{3}$)(ω>0)在平面直角坐標系中的部分圖象如圖所示,若∠ABC=90°,則ω=( 。
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設集合A={x|-1≤x≤2},B={x|0≤x≤4},則venn圖陰影區(qū)域表示的集合是(  )
A.{x|0≤x≤2}B.{x|1≤x≤2}C.{x|0≤x≤4}D.{x|1≤x≤4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=ln(2x2+2)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=ex,g(x)=mx+n.
(1)設h(x)=f(x)-g(x).當n=0時,若函數(shù)h(x)在(-1,+∞)上沒有零點,求m的取值范圍;
(2)設函數(shù)r(x)=$\frac{1}{f(x)}$+$\frac{nx}{g(x)}$,且n=4m(m>0),求證:當x≥0時,r(x)≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.將函數(shù)y=cos x的圖象上所有的點向右平行移動$\frac{π}{10}$個單位長度,再把所得各點的橫坐標縮短到原來的$\frac{1}{2}$倍(縱坐標不變),所得圖象的函數(shù)解析式是(  )
A.y=cos(2x-$\frac{π}{10}$)B.y=cos(2x-$\frac{π}{5}$)C.y=cos($\frac{1}{2}$x-$\frac{π}{10}$)D.y=cos($\frac{1}{2}$x-$\frac{π}{20}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設等差數(shù)列{an},{bn}的前n項之和分別為Sn、Tn.若對任意n∈N*有①(n+3)Sn=(3n+1)Tn;②a${\;}_{{n}^{2}+27}$≥λ•bn均恒成立,且存在n0∈N*,使得實數(shù)λ有最大值,則n0=(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=ax-4a-x(a>0且a≠1)在[0,2]上的最大值與最小值之和為0,則a的值為( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在△ABC中,a,b,c分別是角A,B,C所對的邊,若A=105°,B=45°,b=$\sqrt{2}$,則c=( 。
A.1B.$\frac{1}{2}$C.2D.$\frac{1}{4}$

查看答案和解析>>

同步練習冊答案