10.已知集合M={1,2,3,4},集合N={1,3,5},則M∩N等于(  )
A.{2}B.{2,3}C.{1,3}D.{1,2,3,4,5}

分析 由題意和交集的運算直接求出M∩N.

解答 解:因為集合M={1,2,3,4},集合N={1,3,5},
所以M∩N={1,3},
故選:C.

點評 本題考查了交集及其運算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.平面向量$\overrightarrow{OA}$⊥$\overrightarrow{AB}$,|$\overrightarrow{OA}$|=2,則$\overrightarrow{OA}$•$\overrightarrow{OB}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,長方體ABCD-A1B1C1D1中,D1D=DC=4,AD=2,E為D1C的中點.
(1)求三棱錐D1-ADE的體積.
(2)AC邊上是否存在一點M,使得D1A∥平面MDE?若存在,求出AM的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將一個直角三角形繞斜邊所在的直線旋轉(zhuǎn)一周,所得的幾何體包括( 。
A.一個圓臺B.一個圓錐C.一個圓柱D.兩個圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.y=cos$\frac{x}{3}$(x∈R)的最小正周期是( 。
A.$\frac{π}{2}$B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知α是第三象限角,sinα=$-\frac{3}{5}$,求$\frac{tan(2π-α)cos(\frac{3π}{2}-α)cos(6π-α)}{sin(α+\frac{3π}{2})cos(α+\frac{3π}{2})}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為了解學(xué)生身高情況,某校以10%的比例對全校700名學(xué)生按性別進(jìn)行分層抽樣檢查,測得身高情況的統(tǒng)計圖如下:
(1)估計該校男生的人數(shù);
(2)從樣本中身高在180~190cm之間的男生中任選2人,求至少有1人身高在185~190cm之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)利用“五點法”畫出函數(shù)$y=2sin(\frac{1}{2}x+\frac{π}{6})$在長度為一個周期的閉區(qū)間的簡圖.
    x-$\frac{π}{3}$  $\frac{2π}{3}$    $\frac{5π}{3}$$\frac{8π}{3}$  $\frac{11π}{3}$    
  $\frac{1}{2}x+\frac{π}{6}$0              $\frac{π}{2}$                  π            $\frac{3π}{2}$               2π               
    y020-20
(2)說明該函數(shù)圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣平移和伸縮變換得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在三棱錐P-ABC中,PC⊥平面ABC,∠ACB=45°,BC=2$\sqrt{2}$,AB=2.
(1)求AC的長;
(2)若PC=$\frac{{2\sqrt{3}}}{3}$,點M在側(cè)棱PB上,且$\overrightarrow{BM}=λ\overrightarrow{MP}$,當(dāng)λ為何值時,二面角B-AC-M的大小為30°.

查看答案和解析>>

同步練習(xí)冊答案