9.給出下列結(jié)論:①$\root{4}{(-2)^{4}}$=±2;②y=x2+1,x∈[-1,2],y的值域是[2,5];③冪函數(shù)圖象一定不過第四象限;④函數(shù)f(x)=ax+1-2(a>0,a≠1)的圖象過定點(diǎn)(-1,-1);⑤若lna<1成立,則a的取值范圍是(-∞,e).其中正確的序號是(  )
A.①②B.③④C.①④D.③④⑤

分析 由根式的化簡判斷①,根據(jù)二次函數(shù)的性質(zhì)判斷②,由冪函數(shù)的性質(zhì)判斷③,由a0=1和指數(shù)函數(shù)的判斷④,由對數(shù)函數(shù)的性質(zhì)判斷⑤.

解答 解::①$\root{4}{(-2)^{4}}$=|-2|=2,①不正確;
②y=x2+1,x∈[-1,2],y的值域是[1,5],②不正確;
③由冪函數(shù)知:冪函數(shù)圖象一定不過第四象限,③正確;
④令x+1=0得x=-1,且y=-1,即f(x)=ax+1-2的圖象過定點(diǎn)(-1,-1),④正確;
⑤由lna<1得0<a<e,即a的取值范圍是(0,e),⑤不正確,
正確的命題是③④,
故選:B.

點(diǎn)評 本題考查基本初等函數(shù)的圖象與性質(zhì),以及根式的化簡的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}(3a-2)x+6a-1(x<1)\\{a^x}(x≥1)\end{array}\right.$單調(diào)遞減,那么實(shí)數(shù)a的取值范圍是( 。
A.(0,1)B.(0,$\frac{2}{3}$)C.[$\frac{3}{8}$,$\frac{2}{3}$)D.[$\frac{3}{8}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:甲商場:顧客轉(zhuǎn)動如圖所示圓盤,當(dāng)指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為$\frac{π}{4}$,邊界忽略不計(jì))即為中獎.乙商場:從裝有2個白球、2個藍(lán)球和2個紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是$\frac{1}{3}$,若從盒子中一次性摸出2球,且摸到的是2個相同顏色的球,即為中獎.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)試問:購買該商品的顧客在哪家商場中獎的可能性大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.下列四個函數(shù)中偶函數(shù)的序號為①④
①$f(x)=\root{3}{x^2}+1$
②$f(x)=x+\frac{1}{x}$
③$f(x)=\sqrt{1+x}-\sqrt{1-x}$
④f(x)=x2+x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)是偶函數(shù),它在[0,+∞)上是減函數(shù),若f(lgx)>f(1),則x的取值范圍是( 。
A.$({\frac{1}{10},1})$B.$({\frac{1}{10},10})$C.$({0,\frac{1}{10}})∪({1,+∞})$D.(0,1)∪(10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知平行四邊形ABCD的三個頂點(diǎn)的坐標(biāo)為A(-1,4),B(-2,-1),C(2,3).
(1)求平行四邊形ABCD的頂點(diǎn)D的坐標(biāo);
(2)在△ACD中,求CD邊上的高線所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.等差數(shù)列{an}中,a2+a3=9,a4+a5=21,那么它的公差是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a⊥({\overrightarrow a+\overrightarrow b})$,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,三棱柱ABC-A1B1C1中,D是AA1的中點(diǎn),E為BC的中點(diǎn).
(Ⅰ)求證:直線AE∥平面BC1D;
(Ⅱ)若三棱柱ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求點(diǎn)E到平面BC1D的距離.

查看答案和解析>>

同步練習(xí)冊答案